IE1 chimie (25 octobre 2024)

	Exercice 1 Généralité					12		
1		1 7	$\frac{1}{R} = R_{x} \cdot Z^{2} \cdot \left(\frac{1}{n^{\prime 2}} - \frac{1}{n^{\prime 2}}\right)$	$\frac{1}{n^2}$		3		
	Avec							
	λ la longueur d'émission ou d'absorption d'un photon liée à une transition							
	R_X la constante de Rydberg de l'ion hydrogénoïde							
	Z le numéro atomique de l'ion hydrogénoïde, qui correspond au nombre de proton du							
	noyau							
	n' le niveau d'énergie final et n le niveau d'énergie initial pour l'émission							
2	Une série spectrale correspond à une série de lumière monochromatique dont les							
	longueur d'onde (ou énergie) sont en relation simple les unes des autres suivant la relation de Ritz-Balmer. Pour un ion hydrogénoïde, l'équation de Ritz Balmer s'écrit en énergie : $E = h. c. R_x. Z^2 \left(\frac{1}{n'^2} - \frac{1}{n^2} \right)$							
	Pour le photon de longueur d'onde caractéristique d'une raie de tête, son énergie se calcule suivant :							
	$E = h.c.R_x.Z^2 \left(\frac{1}{n'^2} - \frac{1}{n^2}\right)$ avec n' < n							
	La raie limite est	une transition de	l'infini vers un ni	veau n soit :				
	$E = h. c. R_{x}. Z^{2} \left(\frac{1}{r}\right)$	$\left(\frac{1}{l^2}\right)$						
3	Un hydrogénoïde	est un ion avec 2	Z>2 ne possédar	nt plus qu'un 1 seu	ıl électron.	3		
	Pour Li+ (Z=3), 3 protons et 2 électrons. Ce n'est donc pas un hydrogénoïde. Pour Be3+ (Z=4), 4 protons et 1 électron. Il s'agit bien d'un hydrogénoïde							
4	_	•	nimale nécessair	e à arracher un éle	ectron à un atome	2		
	pris dans son été	fondamentale.						
	Toujours positive Exercice 2 Hydrogène							
4	Exercice 2 Hydrogène							
1	Dans un premier temps il faut identifier le niveau d'arrivé conduisant à l'émission d'un					2		
	photo de longueur d'onde 656 nm (plus faible variation énergétique). Pour cela il faut tester les transitions $2 \rightarrow 1$, $3 \rightarrow 2$							
	100 11011101110 = 7	., • , =	a=2 car elles so	nt dans le visible (s	érie de Balmer pour			
	On traite alors les transitions $n \to n = 2$ car elles sont dans le visible (série de Balmer pour l'hydrogène)							
	3->2 (656nm)	4->2 (486 nm)	5->2 (434 nm)	6-> 2 (410 nm)				
2	3->2 (656nm)	4->2 (486 nm)	5->2 (434 nm)	6-> 2 (410 nm)		2		
	109 756.1	109 739.4	109 721.3	109 756.1				
		Pour chaque transitions, il faut recalculer Rh						
	La moyenne des 4 valeurs est 109 743.2 cm ⁻¹							
3.		Soit la valeur théorique à 0.06% près						
J.		Le calcul de l'énergie d'un niveau s'établit à partir de la formule Ritz Balmer $E = h.c.R_H.\left(\frac{1}{n'^2} - \frac{1}{n^2}\right)$ en considérant une transition de n' qui est ∞ et n le niveau atteint						
	On trouve alors E							
	Pour n=1, $E_1 = -$							
	Comme $E_{exitation} > E_1 $ il y a ionisation							

4	L'électron sort du système et l'énergie restant est transformée sous forme d'énergie						
	cinétique ($E_c = E_{excitation} - E_1 = 2.16 \times 10^{-18} J$)						
	La vitesse est $v = \sqrt{2E/m} = 2.18 \times 10^6 \text{m} \cdot \text{s}^{-1}$						
5	'énergie du niveau 1 pour un autre H reste égale à $-2.18 imes 10^{-18} J$						
	L'énergie de l'électron éjecté est inférieure à l'énergie du niveau 1 de l'atome						
	d'hydrogène, il n'y a pas d'ionisation possible.						
	Exercice 3 Hydrogénoïdes						
1.	Il faut repartir de la formation de Ritz Balmer appliquée aux hydrogénoïdes . $E_{[f]} = h.c.R_{x}.Z^{2}\left(\frac{1}{n'^{2}}-\frac{1}{n^{2}}\right)$						
	Le calcul de l'énergie d'ionisation revient à considérer la quantité énergétique apportée par une particule venant de $n=\infty$ (initial) et atteignant l'électron localisé sur le niveau n'=1 (final). $E_{ion}=hcR_{x}Z^{2}\left(\frac{1}{n^{2}}\right)$. Ici on prend $Rx=Rh$ comme indiqué dans le tableau des constantes.						
	$E_{ionisation\ en[J]} = 2.178 \times 10^{-18} Z^2 \left(\frac{1}{n'^2}\right) \Rightarrow E_{ionisation\ en[eV]} = \frac{E_{n\ en[J]}}{e} = 13.6. Z^2/n'^2$ soit $E_{ion} = 217.60\ eV$ Cela correspond à une longueur d'onde de 5.70 nm soit les rayons X						
2.	$E_1 = -217.60 \ eV \ , E_2 = -54.40 \ eV \ , E_3 = -24.28 \ eV \ , E_4 = -13.60 \ eV \ , E_5 = -8.70 \ eV$ et $E_6 = -6.04 \ eV$						
3	La bande de longueur d'onde correspond à une bande énergétique comprise (ΔE) entre 207.71 et 210.53 eV. Avec $\Delta E = Ef - Ei$ alors Ef est compris entre -9.89 eV et -7.07 eV ce qui encadre le niveau 5 On observera donc une absorption						
4	On se retrouve alors avec un hydrogénoïde dans un état excité Niveau 5 atteint par l'électron						
5	Il faut considérer l'ensemble des transitions possibles entre 5 et 1 soit 10 raies d'émission	4					
	Le diagramme doit présenter des niveaux d'énergies d'espacement différents (ils se resserrent quand n augmente) + niveau infini						
	Les transitions doivent correspondre à des raies d'émission.						
	Les valeurs des niveaux d'énergie doivent être indiquées ainsi que l'échelle des abscisses						
	Exercice3 Atomistique						
1.	Le groupe 6 se localise dans le bloc des élèments de transitions de la classification périodique. Il aura 4 electrons dans les orbitales D	3					

	Selon Klechkowski il y a donc remplissage d'une orbitale S avant de terminer avec des électrons dans la sous couche D. Si le chrome est sur la période 4 cela correspond à 4s2 et 3D4. La configuration électronique en première écriture sera : 1s2 2s2 2p6 3s2 3p6 3d4 4s2 Le déplacement d'un électron de la 4S en 3D permet de stabiliser la sous couche D. La configuration électronique sera alors : 1s2 2s2 2p6 3s2 3p6 3d5 4s1 (exception). Soit Z = 24	
2.	La configuration de Z=30 est 1s2 2s2 2p6 3s2 3p6 3d10 4s2 On s'intéresse à un électron de la 2p soit l'écrantage de fait sur : 1s2 2s2 2p(5+1) soit $\sigma=7\times0.35+2\times0.85=4.15$ d'où $Z^*=30-4.15=25.85$	3