[{ S L I N

o ~1 O U

DES SCENCES
APPLIOUEES

IE Algorithmics and Programmation 2 INS |\
SCAN - June 2022

Duration: 2h
Documents and calculator forbidden

Warning : A program that is badly indented, badly commented or with the wrong choice of variable
names will be penalized (up to -1 point).

« Always code as if the guy who ends up maintaining your code will be a violent psychopath who knows
where you live. » Martin Golding

Exercise 1 Code Reading - Recursion (3 pts)

Given the following code :

def function (k,n):
res =1
if n =k or k ==
res =1
else :
res = function(k,n-1) + function(k-1,n-1)
return res

total = 4
for n in range(total+l)
for k in range(n+l)
print(f"{function(k,n)} ", end="")
print()

(Q1.1) What is displayed on the terminal ?
(Q1.2) What is the base case in this example ? Specify the lines of the program and their
interpretation

(Q1.3) What is the recursive form in this example ?

~1 O U L N~

20

Exercise 2 Code Reading - 2D arrays (3 pts)

Given the following code :

def functionl(t,a,b,c):
for i in range(len(t(al])):
tlalli]l = t[alli] + cxt[b][i]

def function2(t,l):
t2=[]
for i in range(len(t)):
t2.append(t[i].copy())
t2[i].append(1[i])
return t2

t=[[‘1,1,2] ’ [2v111]l [1v3v3]]

functionl(t,1,0,2)
print(t)

print(function2(t,[2,3,1]))

print(t)

(@2.1) What is displayed on the terminal ?

(Q2.2) Briefly explain what the functions functionl and function2 do?

o

Exercise 3 Functional decomposition - Game of Nim (5 pts)

The game of Nim is a two player pure strategy game. There are many versions of it (like the game of sticks

in Fort-Boyard), but here we will focus on the version with multiple heaps. Consider the following code that
implements this version of the game :

from random import randint

nb_heat = 3

np_piece _max = 10

num_player = 1

fini = False

the_heaps = []

for 1 in range(nb_heat):
the_heaps.append(randint(1,np_piece max))

print(f"{len(the heaps)} heap : ", end="")

O o~ O Ut A o N

p—t
o

11 for ele in the_heaps:

12 print(f" {ele} ", end="")

13 print()

14 while fini == False :

15 print(f"Player {num_player}, which heap?")

16 num_heap = int(input(f"Enter a value between 0 and {nb_heat-1} : "))

17 while num_heap < 0 or num_heap >= nb_heat :

18 num_heap = int(input(f"Enter a value between 0 and {nb heat-1} : "))
19 while the_heaps[num_heap] ==

20 print("Heap empty!")

21 print(f"Player {num_player}, which heap?")

22 num_heap = int(input(f"Enter a value between 0 and {nb_heat-1} : "))
23 while num_heap < 0 or num_heap >= nb_heat :

24 num_heap = int(input(f"Enter a value between 0 and {nb_heat-1} : "))
25 print(f"Player {num_player}, how many pieces?")

26 np_piece = int(input(f"Enter a value between 1 and {the_heaps[num_heap]} : "))
27 while np _piece < 1 or np_piece > the_heaps[num_heap]

28 np_piece = int(input(f"Enter a value between 1 and {the_heaps[num_heap]}
29 the_heaps[num_heap] -= np_piece

30 print(f"{len(the _heaps)} heap : ", end="")

31 for ele in the_heaps:

32 print(f" {ele} ", end="")

33 print()

34 if num_player == 1 :

35 num_player = 2

36 else :

37 num player =1

38 fini = True

39 i=0

40 while fini and i < len(the_heaps):

41 if the heaps[i] != 0 :

42 fini = False

43 else :

44 i+=1

45 print(f"Player {num player} has lost !")

In this version, we consider N heaps of pieces, numbered from 0 to N — 1. The players play alternately.
When it is his turn, a player indicates the number i of the heap from which he wants to remove pieces. If n;
is the number of pieces in this heap, the player can take between 1 and n; pieces in a single heap (but he can
change the heap on the next turn). The winner is the one who removes the last piece, all heaps combined. The
loser is therefore the one who must play while all the heaps are empty.

3

(@3.1) Propose a functional decomposition with at least four functions from the proposed
code, according to the following gulidelines :

You will write the main part of this program the fi ns you propose. For each function, you will
write its signature as well as its content. The proposed funetions mus perform a meaningful subtask 5:_\.2
avoid repeating lines of code in the main program. Regarding the content of the functions, you can if you wish
write the number of lines identical to the program above and add only the lines of code that differ. For instance :

def m_u,mmwoﬂp (paraml) E
lines 8 to 21
return var

R N N

Exercise 4 2D Lists - Prim’s Algorithm (10.5 pts)

A - Warming up
i i 7. ty square matrix.
(@4.1) Propose a function matrix_empty which initializes an emp
This function takes the size of the matrix as a parameter and returns a square
matrix filled with -1.

B - Prim's Algorithm

We want to build a network of high speed train lines which connects all the major cities of the country to

i e i t. We already know the lines that could be built between different cities
the capital at the lowest possible cos e already D e fmes that allows

i ion i in Fi lis to
and their cost. An example configuration is shown in Figure 1. <o=.a goa)
all cities to be connected by train to the capital, with minimal total construction cost (an example

of solution is shown in blue in Figure 1).

150

_ 8o
m.@ G

A B C D E

1 230 190 120 310
230 -1 150 110 80
190 150 -1 -1 -1
120 110 -1 -1 120
310 8 -1 120 -1

HO QW >

FIGURE 1 — An example of possible train lines FIGURE 2 — The matrix representing the configu-
(black and blue lines) between cities A (the ca- ration in Figure 1.

pital), B, C, D and E. The set of lines drawn in

blue is a solution to the problem.

To solve this problem, you will implement Prim’s algorithm. It consists of adding the train lines one by one,
choosing each time the cheapest line that connects a city not yet connected to the capital to a city already
connected. It can be written with the following pseudo-code :

the capital is considered connected

while there are still cities not connected to other cities:

we find the cheapest train line that connects a

new city

we update the set of cities connected to the other cities

Running this algorithm on the example in Figure 1 would add the following train lines (in order) :

— the line from A to D (cost 120)

— the line from D to B (cost 110)

— the line from B to E (cost 80)

— the line from B to C (cost 150)

To implement this alg
matrix_lines of size nxn (n
represents the cost of a line hetween the

we will

le to build as a matrix
rital) where matrix_lines[i] [j]
es i and j. I it ble to build a line between the cities i
and j, then matrix_lines[i] [j] is -1. The corresponding matrix to the example is shown in Figure 2. Note
that matrix_lines([i] [j] == matrix_lines[j][i] and matrix_lines[i] [i] == -1.

To find out which cities have sady been connected, we will use a list of booleans 1ist_cities of length n
which indicates for each city if it is already connected to the others : if the i is already connected to another
city, then list_cities[i] is True, False otherwise.

(Q4.2)

(Q4.3)

Propose a function all_cities which checks if all cities are connected.

This function takes as a parameter the list of booleans 1ist cities defined above
and returns True if all the cities are connected to the network, False otherwise.
Make your loop stop as soon as possible.

Propose a function nev_city which tests whether the line connecting the cities i
and j allows to connect a new city to the network (connects a city already connec-
ted and a city not yet connected).

This function returns True if the line connects a new city, False otherwise. It takes

as parameters the indices i and j of the cities linked by the line and the list
list_cities.

To ease the rest of the algorithm, we want to extract from the matrix matrix_lines a list of possible lines
in the form of a 2D list 1ist_lines of size m x 3 (m the number of possible lines) where :
list_lines[i] [0] represents the starting point of the line i
— list_lines[i] [1] represents the end point of the line
— list_lines[i] [2] represents the cost of the line
From the matrix given as an example, we would obtain the following list :
muuwuwmou,mm_o~uw0u,ﬁw.w.»mou.mw.o.wwou.Hm.m_»»ou_Hp.o.m»ou.m».».mou.m».m.HMOM

(©4.4)

(@Q4.5)

(Q4.6)

?demm a function list_from_mat which creates the list 1ist_lines of possible train
lines from the matrix matrix_lines. You will ensure that the list contains each train
line only once (the direction of the line does not matter).

Propose a function next_line which finds the next line to add : the line with the
lowest cost that allows to reach a new city.

This function takes as parameters the lists list_cities and list_lines defined
above and returns the indices of the two cities connected by the chosen line.

Propose a function algorithm_prim that implements Prim’s algorithm described
above. You will reuse the functions defined previously (in part 4.B).

This function takes as parameters the matrix matrix_lines and the index of the
starting city (the capital) and returns the list of pairs of cities connected by the
chosen lines and the total cost of construction. It displays the chosen line at each
turn of the loop.

You can use the function init_cities which initializes the list list_cities : it takes as a parameter the
number of cities and returns a list filled with False. We will assume that this function is already defined :
you don’t have to write it.

Executing the function algorithm_prim(matrix_lines,0) on the example defined above would return the
list [[3,0],(1,3],[4,1],[2,1]1] and a total cost of 460, and would output at runtime :

New line
New line
New line
New line

from 0 to 3
from 3 to 1
from 1 to 4
from 1 to 2

(Q4.2)

(Q4.3)

Propose a function all_cities which checks if all cities are connected.

This function takes as a parameter the list of booleans 1ist_cities defined above
and returns True if all the cities are connected to the network, False otherwise.
Make your loop stop as soon as possible.

Propose a function new_city which tests whether the line connecting the cities i
and j allows to connect a new city to the network (connects a city already connec-
ted and a city not yet connected).

This function returns True if the line connects a new city, False otherwise. It takes
as parameters the indices i and j of the cities linked by the line and the list
list_cities.

To ease the rest of the algorithm, we want to extract from the matrix matrix_lines a list of possible lines
in the form of a 2D list 1ist_lines of size m x 3 (m the number of possible lines) where :

— list_lines[i] [0] represents the starting point of the line i

— list_lines[i] [1] represents the end point of the line

— list_lines[i] [2] represents the cost of the line

From the matrix given as an example, we would obtain the following list :
ﬁu.o.wmou~mw.ouwwou~mm-.Hmou.Hm.o.umou.hm_».HHou.h».o.w»ou.H».H.mOQ‘hp.m.»MOH

(Q4.4)

(@4.5)

(Q4.6)

Propose a function list_from_mat which creates the list list_lines of possible train
lines from the matrix matrix_lines. You will ensure that the list contains each train
line only once (the direction of the line does not matter).

Propose a function next_line which finds the next line to add : the line with the
lowest cost that allows to reach a new city.

This function takes as parameters the lists 1ist_cities and list_lines defined
above and returns the indices of the two cities connected by the chosen line.

Propose a function algorithm_prim that implements Prim’s algorithm described
above. You will reuse the functions defined previously (in part 4.B).

This function takes as parameters the matrix matrix_lines and the index of the
starting city (the capital) and returns the list of pairs of cities connected by the
chosen lines and the total cost of construction. It displays the chosen line at each
turn of the loop.

You can use the function init_cities which initializes the list list_cities : it takes as a parameter the
number of cities and returns a list filled with False. We will assume that this function is already defined :
you don’t have to write it.

Executing the function algorithm_prim(matrix_lines,0) on the example defined above would return the
list [[3,0],[1,3],[4,1],[2,1]1] and a total cost of 460, and would output at runtime :

New line
New line
New line
New line

from 0 to 3
from 3 to 1
from 1 to 4
from 1 to 2

{ "type": "Document", "isBackSide": false }

{ "type": "Form", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Form", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

