
Name: MELLOUK

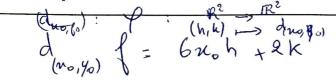
Chouaib

20)

Exercise 1. Let

You're given that N is a norm on \mathbb{R}^2 . Plot the unit ball of N. No justifications required.

Exercise 2. Let $(E, \|\cdot\|_E)$, $(F, \|\cdot\|_F)$, $(G, \|\cdot\|_G)$ be three normed vector spaces. Let U be an open subset of E and V be an open subset of F. Let $u: U \to V$ and $v: V \to G$ be two functions, and let $x_0 \in U$. The following text is the chain rule theorem. Fill-in the blank:


If u is differentiable at x_0 and v is differentiable at $u(x_0)$ then $v \circ u$ is differentiable at x_0 and

$$D_{x_0}(v \circ u) = \mathcal{D}_{\mathbf{u}_{(u_o)}} \vee \circ \mathcal{D}_{\mathbf{u}_o} \mathbf{u}$$

Exercise 3. Let

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
$$(x,y) \longmapsto 3x^2 + 2y$$

and let $(x_0, y_0) \in \mathbb{R}^2$. You're given that f is differentiable at (x_0, y_0) . Determine the differential $d_{(x_0, y_0)} f$ of f at (x_0, y_0) . No justifications required.

7