

TEST #2, DECEMBER 1ST, 2025 - DURATION 1H30

Warnings and advice

- All documents, calculators or electronic devices, means of communication, dictionnaries, are prohibited.
 - The grading scale is given as an indication.
 - Presentation, quality of writing, clarity and precision of reasoning are taken into account in the grading.
-

EXERCISE 1 *Limits (2 pts)*

Determine the limits, if any, of the sequences below :

$$u_n = \sqrt{n^2 + \sqrt{n}} - n \quad v_n = \left(1 - \frac{2}{n}\right)^n$$

EXERCISE 2 *Determinants (4 pts)*

The two questions in this exercise are independent.

- 1) Let $A \in \mathcal{M}_n(\mathbb{R})$ be such that $A^2 = 2A$. What are the possible values for the determinant of A ?
- 2) a) Let $a \in \mathbb{R}$. Compute the determinant of the matrix $M(a)$ below :

$$M(a) = \begin{pmatrix} 2-a & -1 & -1 \\ -1 & 2-a & 1 \\ -1 & 1 & 2-a \end{pmatrix}.$$

- b) For which values of a is the matrix $M(a)$ invertible ?
 - c) What are the eigenvalues of the matrix $A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix}$?
 - d) Without any additional computation, what can be said about the dimension of the associated eigenspaces ?
-

EXERCISE 3 *Adjacent Sequences (3.5 pts)*

Let a and b be two real numbers such that $a > b > 0$.

We define the sequences $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ by

$$\begin{cases} x_0 = a \\ \forall n \in \mathbb{N}, \quad x_{n+1} = \frac{ax_n + by_n}{a+b} \end{cases} \quad \begin{cases} y_0 = b \\ \forall n \in \mathbb{N}, \quad y_{n+1} = \frac{ay_n + bx_n}{a+b}. \end{cases}$$

- 1) Let $(w_n)_{n \in \mathbb{N}}$ be the sequence defined by : $\forall n \in \mathbb{N}, \quad w_n = y_n - x_n$.
Show that $(w_n)_{n \in \mathbb{N}}$ is a geometric sequence.
 - 2) Show that the sequences $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ are adjacent.
What can be deduced from this ?
 - 3) Study the sequence $(x_n + y_n)_{n \in \mathbb{N}}$.
Deduce the limit of $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$.
-

EXERCISE 4 Iterative Relations (10.5 pts)

Let f be the function defined by : $\forall x \in \mathbb{R}, f(x) = \frac{1}{2}x(1-x)$ and $(u_n)_{n \in \mathbb{N}}$ the sequence defined by

$$\begin{cases} u_0 = a \in \mathbb{R} \\ \forall n \in \mathbb{N}, u_{n+1} = f(u_n). \end{cases}$$

Part One

- 1) a) Study the sign of $f(x) - x$.
b) Study the variations of f then sketch the curve of f .
- 2) We assume in this question that $a \in \left[0, \frac{1}{2}\right]$.
 - a) Show that for all $n \in \mathbb{N}, u_n \in \left[0, \frac{1}{2}\right]$.
 - b) Study the variations of $(u_n)_{n \in \mathbb{N}}$.
 - c) Study the convergence of $(u_n)_{n \in \mathbb{N}}$ and give its limit, if any.
 - d) What happens if $a \in \left[\frac{1}{2}, 1\right[$?
- 3) Determine the variations and the limit (if any) of $(u_n)_{n \in \mathbb{N}}$ when $a < -1$.

Part Two

We now consider the case where $a \in]0, 1[$. We thus have $\lim_{n \rightarrow +\infty} u_n = 0$ and for all $n \in \mathbb{N}, u_n > 0$.
We define the sequence $(w_n)_{n \in \mathbb{N}}$ by : $\forall n \in \mathbb{N}, w_n = 2^n u_n$.

- 1) Show that for all $n \in \mathbb{N}, w_{n+1} - w_n = -\frac{w_n^2}{2^n}$.

2) Deduce that $(w_n)_{n \in \mathbb{N}}$ converges to a limit $\ell \in [0, 1[$.

3) Let $n \in \mathbb{N}^*$.

- a) Calculate the sum $\sum_{k=1}^{n-1} \frac{1}{2^k}$.

- b) Deduce that $\sum_{k=1}^{n-1} \frac{w_k^2}{2^k} \leq w_1^2$.

- c) Deduce that $w_1 - w_1^2 \leq w_n \leq w_1$.

- 4) Deduce that $\ell > 0$, and that $u_n \underset{n \rightarrow +\infty}{\sim} \frac{\ell}{2^n}$.