Exercice 1

1.	L'intégrale est généralisée uniquement en $+\infty$ car la fonction intégrée est continue sur $[1, +\infty[$.
	$ \forall x \geqslant 1, \left \frac{x\sqrt{x}}{1+x^3} \sin(x^2) \right \leqslant \frac{x\sqrt{x}}{1+x^3} \underset{x \to +\infty}{\sim} \frac{1}{x^{3/2}}$. Comme $\int_1^{+\infty} \frac{1}{x^{3/2}} dx$ converge, on en déduit que notre intégrale converge absolument et donc converge.
2.	L'intégrale est généralisée en 0 et en $+\infty$ car la fonction intégrée est continue sur $]0, +\infty[$.
	$1 + x^{2025}$
	\bullet $\frac{1+x^{2025}}{\sqrt{x}e^x}$ $\underset{x\to 0+}{\sim}$ $\frac{1}{\sqrt{x}}$. Comme $\int_0^1 \frac{1}{\sqrt{x}} dx$ converge, on en déduit que $\int_0^1 \frac{1+x^{2025}}{\sqrt{x}e^x} dx$ converge aussi (par compa-
	raison de fonctions positives);
	$\bullet \frac{1+x^{2025}}{\sqrt{x}e^x} \underset{x\to +\infty}{\sim} \frac{x^{2024,5}}{e^x} \underset{x\to +\infty}{=} o\left(\frac{1}{x^2}\right). \text{ Comme } \int_1^{+\infty} \frac{1}{x^2} dx \text{ converge, on en déduit que } \int_1^{+\infty} \frac{1+x^{2025}}{\sqrt{x}e^x} dx$
	converge aussi.
	En conclusion, notre intégrale est convergente.
3.	L'intégrale est généralisée en 0 et en 1 car la fonction intégrée est continue sur]0,1[.
	• $\lim_{x\to 0^+} \frac{x^2}{\ln(x)} = 0$ donc l'intégrale est faussement généralisée en 0, qui ne pose donc finalement pas problème;
	• $\frac{x^2}{\ln(x)} \underset{x \to 1^-}{\sim} \frac{1}{x-1}$. Or $\int_0^1 \frac{1}{x-1} dx$ diverge (de même nature que $\int_{-1}^0 \frac{1}{u} du$) donc $\int_0^1 \frac{x^2}{\ln(x)} dx$ diverge.
	En conclusion, notre intégrale est divergente.

Exercice 2

1.	Comme $\lim_{t \to +\infty} t^{-n+1} \ln t = 0$ par croissances comparées et $\lim_{t \to 1} t^{-n+1} \ln t = 0$, et que $\int_{1}^{+\infty} \frac{1}{t^n} dt$ converge pour
	$n \ge 2$, une IPP donne:
	$\forall n \geqslant 2, c_n = \int_1^{+\infty} \frac{\ln t}{t^n} dt = \lim_{t \to +\infty} \frac{t^{-n+1}}{-n+1} \ln t - \lim_{t \to 1} \frac{t^{-n+1}}{-n+1} \ln t - \frac{1}{-n+1} \int_1^{+\infty} \frac{1}{t^n} dt = \frac{1}{(n-1)^2}.$
2.	Pour $n=0, a_0=\int_1^{+\infty}\frac{\ln t}{t+1}\mathrm{d}t$ diverge par comparaison avec l'intégrale de Riemann $\int_1^{+\infty}\frac{1}{t}\mathrm{d}t$ puisque $\frac{\ln t}{t+1} \underset{t\to+\infty}{\sim}$
	$\left \frac{\ln t}{t} \geqslant \frac{1}{t} > 0 \text{ pour } t \geqslant \text{e.} \right $
	Pour $n \ge 1$, $a_n = \int_1^{+\infty} \frac{\ln t}{t^n(t+1)} dt$ est généralisée en $+\infty$ car la fonction intégrée est continue sur $[1, +\infty[$.
	Or $\lim_{t \to +\infty} t^{3/2} \frac{\ln t}{t^n(t+1)} = 0$ par croissances comparées, donc $\frac{\ln t}{t^n(t+1)} = o\left(\frac{1}{t^{3/2}}\right)$. L'intégrale converge donc
	par comparaison avec une intégrale de Riemann convergente ; on peut aussi arriver au même résultat en remarquant
	que $\forall t \geqslant 1, \ 0 \leqslant \frac{\ln t}{t^n(t+1)} \leqslant \frac{\ln t}{t^{n+1}}$ et utiliser la question 1.
3.	La suite $(a_n)_{n\geqslant 1}$ est positive car ses termes sont obtenus par intégration d'une fonction positive de 1 à $+\infty$. Pour $n\in\mathbb{N}^*$ et tout $t>1$, $\frac{1}{t^n}>\frac{1}{t^{n+1}}$, avec égalité seulement pour $t=1$. Par multiplication avec la quantité positive
	$\frac{\ln t}{t+1}$, suivie d'une intégration sur $[1, +\infty[$ on obtient $a_n > a_{n+1}$. La suite est donc strictement décroissante. La suite étant décroissante et minorée par zéro, elle converge.
4.	Pour tout $t \ge 1$, on a $t+1 \ge 1$, d'où pour tout $n \in \mathbb{N}^*$, $\frac{\ln t}{t^n(t+1)} \le \frac{\ln t}{t^n}$.
	Par intégration sur $[1, +\infty[$ on obtient $0 \le a_n \le c_n = \frac{1}{(n-1)^2}$. Donc $\lim_{n \to +\infty} a_n = 0$, par encadrement.
5.	Par calcul, pour tout $n \ge 2$, $a_n + a_{n+1} = c_{n+1}$.
	Or la suite (a_n) est décroissante, donc $2a_{n+1} \leq a_n + a_{n+1} \leq 2a_n$.
	On en déduit que $c_{n+1} \leq 2a_n \leq c_n$, d'où l'inégalité à prouver.
6.	Par encadrement et théorème des gendarmes, $\lim_{n\to+\infty} 2n^2 a_n = 1$ donc $a_n \underset{n\to+\infty}{\sim} \frac{1}{2n^2}$.

Exercice 3

Quest. Prélim	La fonction $x \mapsto \varphi(x)$ est dérivable sur $[0,1]$ et $\varphi'(x) = \ln(t)(t^{x-1} - t^{1-x})$. Pour $t \geqslant 1$ et $x \in [0,1]$, on a $\ln t \geqslant 0$, $t^{x-1} = e^{(x-1)\ln t} \leqslant 1$ et $t^{1-x} = e^{(1-x)\ln t} \geqslant 1$. Donc $\varphi'(x) \leqslant 0$ pour tout
	$x \in [0, 1]$, ce qui prouve que φ est décroissante sur $[0, 1]$. (on peut aussi écrire $\varphi'(x) = \ln(t)t^{1-x}(t^{2x-2}-1)$ et justifier que $t^{2x-2} \le 1$).
1.	L'intégrale est généralisée en 0 et en $+\infty$ car la fonction intégrée est continue sur $]0, +\infty[$.
	• $\frac{t^{x-1}}{1+t^2} \sim \frac{1}{t^{1-x}}$. Or $\int_0^1 \frac{1}{t^{1-x}} dt$ converge si et seulement si $1-x < 1$, donc par comparaison de fonctions
	positives, $\int_0^1 \frac{t^{x-1}}{1+t^2} dt$ converge si et seulement si $x > 0$.
	• $\frac{t^{x-1}}{1+t^2} \underset{t \to +\infty}{\sim} \frac{1}{t^{3-x}}$. Or $\int_1^{+\infty} \frac{1}{t^{3-x}} dt$ converge si et seulement si $3-x > 1$, donc par comparaison de fonctions
	positives, $\int_{1}^{+\infty} \frac{t^{x-1}}{1+t^2} dt$ converge si et seulement si $x < 2$.
	En conclusion, l'ensemble de définition de f est $D =]0, 2[$.
2. (a)	$\forall x \in D, f(2-x) = \int_0^{+\infty} \frac{t^{1-x}}{1+t^2} dt = \int_{+\infty}^0 \frac{u^{x-1}}{1+1/u^2} \left(-\frac{1}{u^2}\right) du = \int_0^{+\infty} \frac{u^{x-1}}{1+u^2} du = f(x).$
(b)	La courbe de f est symétrique par rapport à la droite d'équation $x=1$.
3. (a)	La même chose qu'en 2.(a), sauf pour les bornes.
(b)	Immédiat par la relation de Chasles.
(c)	D'après la question préliminaire, pour $t \ge 1$ quelconque fixé, et pour tous x, y tels que $0 < x \le y \le 1$, $t^{x-1} + t^{1-x} \ge t^{y-1} + t^{1-y}$. Par division par $1 + t^2$, puis par intégration sur $t \in [1, +\infty[$, on obtient $f(x) \ge f(y)$. Donc f est décroissante sur $[0, 1]$.
4.	f est décroissante sur $]0,1]$ et croissante sur $[1,2[$ par symétrie de sa courbe (question $2.b)$), et donc f admet bien
	un minimum en $x=1$. Ce minimum vaut $\int_0^{+\infty} \frac{1}{1+t^2} = \frac{\pi}{2}$.
5. (a)	Par relation de Chasles, $\int_0^{+\infty} g(t) dt = \int_0^1 g(t) dt + \underbrace{\int_1^{+\infty} g(t) dt}_{\geqslant 0} \geqslant \int_0^1 g(t) dt.$
(b)	Pour tout $x \in D$, $f(x)$ est l'intégrale d'une fonction positive. Donc $f(x) \geqslant \int_0^1 \frac{t^{x-1}}{1+t^2} dt \geqslant \frac{1}{2} \int_0^1 t^{x-1} dt = \frac{1}{2x}$.
(c)	D'après la question précédente, par passage à la limite quand $x \to 0^+$, on trouve $\lim_{x \to 0^+} f(x) = +\infty$. Or la fonction
	est symétrique par rapport à $x=1$, donc elle possède la même limite à droite de son domaine de définition, $\lim_{x\to 2^-} f(x) = +\infty.$