

TEST #1, OCTOBER 20, 2025 - DURATION 1H30

Warnings and advice

- All documents, calculators or electronic devices, means of communication, dictionnaries, are prohi-
- The grading scale is given as an indication.
- Presentation, quality of writing, clarity and precision of reasoning are taken into account in the grading.

EXERCISE 1 (4 pts)

Study the nature of the following integrals:

1)
$$\int_{1}^{+\infty} \frac{x\sqrt{x}}{1+x^3} \sin(x^2) dx$$
 2) $\int_{0}^{+\infty} \frac{1+x^{2025}}{\sqrt{x}e^x} dx$

2)
$$\int_0^{+\infty} \frac{1 + x^{2025}}{\sqrt{x} e^x} dx$$

$$3) \int_0^1 \frac{x^2}{\ln(x)} \, \mathrm{d}x$$

EXERCISE 2 (7 pts)

- 1) Compute $c_n = \int_1^{+\infty} \frac{\ln t}{t^n} dt$ for all integers $n \ge 2$.
- 2) For which values of $n \in \mathbb{N}$ does the integral

$$a_n = \int_1^{+\infty} \frac{\ln t}{t^n(t+1)} \, \mathrm{d}t$$

converge?

- 3) Show that the sequence $(a_n)_{n\geqslant 1}$ is strictly decreasing and convergent.
- 4) By comparison with the sequence (c_n) , determine the limit of (a_n) .
- 5) Compute the sum $a_n + a_{n+1}$ and deduce that for all $n \ge 2$,

$$\frac{1}{2n^2} \leqslant a_n \leqslant \frac{1}{2(n-1)^2}.$$

6) Determine an equivalent of the sequence (a_n) .

EXERCISE 3 (9 pts)

Preliminary question. Let $t \in [1, +\infty)$ be fixed and define for all $x \in [0, 1]$, $\varphi(x) = t^{x-1} + t^{1-x}$. Show that φ is decreasing on [0, 1].

For $x \in \mathbb{R}$ such that the integral converges, set $f(x) = \int_0^{+\infty} \frac{t^{x-1}}{1+t^2} dt$.

- 1) Determine the domain D of the function f, i.e., the set of values of x for which the integral converges.
- 2) a) By performing the substitution $u = \frac{1}{t}$, show that for all $x \in D$, f(2-x) = f(x).
 - b) What symmetry property can be deduced for the graph of f?
- 3) a) Using a substitution, show that for all $x \in D$

$$\int_0^1 \frac{t^{x-1}}{1+t^2} \, \mathrm{d}t = \int_1^{+\infty} \frac{t^{1-x}}{1+t^2} \, \mathrm{d}t$$

b) Deduce that for all $x \in D$,

$$f(x) = \int_{1}^{+\infty} \frac{t^{x-1} + t^{1-x}}{1 + t^2} dt.$$

- c) Using the preliminary question, show that f is decreasing on (0, 1].
- 4) Deduce from the previous questions that f admits a minimum on D and compute this minimum.
- 5) a) Justify that for any continuous and positive function g on $[0, +\infty)$ such that $\int_0^{+\infty} g(t) dt$ converges, we have:

$$\int_0^{+\infty} g(t) \, \mathrm{d}t \ \geqslant \int_0^1 g(t) \, \mathrm{d}t.$$

- b) Show that for all $x \in D$, $f(x) \ge \frac{1}{2x}$.
- c) Determine the limits of f at the boundaries of D.