

WRITTEN PHYSICS TEST 1

*The two exercises are completely independent and the questions within the exercises are mostly independent. **Unjustified results will not be taken into account.** Care should be taken to ensure that your manuscript is presented clearly and legibly. It is recalled that the use of any internet-connected object is strictly forbidden*

A formula sheet, useful for both exercises, is provided at the end of the text.

Part 1 Vector fields

Part 1.1 Flow through a sphere

Consider the vector field \vec{A} defined in a Cartesian coordinate system $(O, \vec{u}_x, \vec{u}_y, \vec{u}_z)$ by :

$$\vec{A} = x^3 \vec{u}_x + y^3 \vec{u}_y + z^3 \vec{u}_z$$

Question 1 : Calculate the divergence of this vector field.

Question 2 : Calculate the flux of this vector field through a sphere of radius R and center O , origin of the coordinate system.

Part 1.2 Vector field in polar coordinates

Consider the vector field \vec{E} defined in **polar coordinates** $(\vec{u}_r, \vec{u}_\theta)$ by the following components :

$$E_r = \frac{2k \cos(\theta)}{r^3} \quad E_\theta = \frac{k \sin(\theta)}{r^3}$$

where k is a positive constant.

Question 3 : Does this vector field derive from a scalar potential V ? If so, calculate this potential. Care should be taken to detail all the calculations.

Question 4 : Determine the equation of the field lines of \vec{E} and draw these field lines schematically (given : $\frac{d}{d\theta} (\ln(\sin \theta)) = \frac{\cos \theta}{\sin \theta}$)

Part 2 Electrostatics

In this part, suppose you're helping out a friend who is in trouble with physics. Your friend has tried to solve the three following exercises but has run into problems with the solutions.

What you have to do :

1. provide your own full solution for each exercise, and then,
2. identify what was the problem in your friend's solution

You will take particular care to give a detailed and well-argued response.

Exercise #1

Consider a sphere of radius R containing a uniform volume charge density ρ in a space with permittivity ϵ : determine the electric field \vec{E} created throughout space by this charge distribution.

Answer to be verified :

Let's use a Cartesian coordinate system with the centre O of the sphere as the origin and spherical coordinates (r, θ, ϕ) . At a point M distinct from O , any plane containing the line OM is a plane of symmetry of the charge distribution, and therefore contains $\vec{E}(M)$, which is collinear with OM and therefore with \vec{u}_r . Furthermore, any rotation by an angle θ or ϕ leaves the charge distribution unchanged, so $\vec{E}(M) = E_r(r) \vec{u}_r$.

If $r < R$, M is in the ball, so $\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon}$.

Thus $\frac{dE_r}{dr} = \frac{\rho}{\epsilon}$ and $E_r = \frac{\rho r}{\epsilon} + c$, with c being a constant.

If $r > R$, there is no charge, so $\vec{\nabla} \cdot \vec{E} = 0$ and thus $E_r = \text{cte}$. By continuity of \vec{E} at $r = R$, $E_r(r > R) = \frac{\rho R}{\epsilon} + c$.

However, the field \vec{E} must be zero far away from the charged source, so $\frac{\rho R}{\epsilon} + c = 0$, which determines the constant.

Exercise #2

Consider an infinitely long cylinder of radius R carrying a uniform surface charge density σ in a space of permittivity ϵ , in a cylindrical coordinate system with axis Oz coinciding with the axis of the cylinder. Assume that the field \vec{E} is radial anywhere throughout space. It is given outside the cylinder ($r > R$) : $\vec{E} = \frac{\sigma R}{\epsilon r} \vec{u}_r$ and we want to determine it inside the cylinder.

Answer to be verified :

The surface $r = R$ is a charged surface, its normal is \vec{u}_r , so the electric field \vec{E} is normal to the charged surface and undergoes a discontinuity of $\frac{\sigma}{\epsilon} \vec{u}_r$ at the interface. Thus, the electric field inside the cylinder ($r < R$) is $\vec{E} = \left(\frac{\sigma R}{\epsilon r} - \frac{\sigma}{\epsilon} \right) \vec{u}_r$.

Exercise #3

Between the planes $z = -h$ and $z = 0$, a uniform volume charge density $-\rho$ is placed; between the planes $z = 0$ and $z = h$, a uniform volume charge density $+\rho$ is placed. Both volume charge distributions are infinite along x and y . Calculate the electric field \vec{E} created by this global charge distribution throughout space with permittivity ϵ .

Hint : you can refer to an exercise done in the tutorials and use the superposition principle : the global electric field is the vector sum of the electric fields created by the two volume charge distributions considered separately. **Perform a diagram of the various electric fields as a function of z .**

Answer to be verified :

Let's apply the principle of superposition and first calculate the field \vec{E}_1 created by the positive volume charge distribution located between $z = 0$ and $z = h$. The charges are invariant under translation along Ox or Oy , so \vec{E}_1 depends only on z . At any point M, the planes (Mxz) and (Myz) are planes of symmetry of the charges, so $\vec{E}_1 = f_1(z) \vec{u}_z$. Furthermore, the plane $z = \frac{h}{2}$ is a plane of symmetry for the charges, so in this plane $\vec{E}_1 = \vec{0}$ and two points symmetrical with respect to this plane have opposite fields.

For $0 < z < h$, $\vec{\nabla} \cdot \vec{E}_1 = \frac{df_1}{dz} = \frac{\rho}{\epsilon}$ therefore $f_1(z) = \frac{\rho z}{\epsilon} + c$.

The field must be null in $z = \frac{h}{2}$, therefore $c = -\frac{\rho h}{2\epsilon}$ and $f_1(z) = \frac{\rho(z - h/2)}{\epsilon}$

For $z > h$, $\frac{df_1}{dz} = 0$, therefore $f_1(z) = f_1(h) = \frac{\rho h}{2\epsilon}$ by continuity of \vec{E}_1 at $z = h$ (no surface charge density).

For $z < 0$, $f_1(h) = -\frac{\rho h}{2\epsilon}$ thanks to the symmetry with respect to the plane $z = h/2$ mentioned above.

The field \vec{E}_2 is identical to \vec{E}_1 except for the sign : $f_2(z) = -\frac{\rho(z - h/2)}{\epsilon}$ in the charged area, $-\frac{\rho h}{2\epsilon}$ when z approaches $+\infty$ et $+\frac{\rho h}{2\epsilon}$ when z approaches $-\infty$.

So outside the charged area, $\vec{E}_1 + \vec{E}_2 = \vec{0}$: the global electric field is nil;

and in the charged area, $\vec{E} = \frac{\rho(z - h/2)}{\epsilon} - \frac{\rho(z + h/2)}{\epsilon} \vec{u}_z = \frac{\rho h}{\epsilon} \vec{u}_z$

Part 3 Useful formulae

Reminder of operator expressions :

In cylindrical coordinates :

Elementary displacement : $d\vec{OM} = dr \vec{u}_r + r d\theta \vec{u}_\theta + dz \vec{u}_z$

$$\vec{\nabla} U = \vec{grad} U = \frac{\partial U}{\partial r} \vec{u}_r + \frac{1}{r} \frac{\partial U}{\partial \theta} \vec{u}_\theta + \frac{\partial U}{\partial z} \vec{u}_z$$

$$\vec{\nabla} \cdot \vec{E} = \operatorname{div} \vec{E} = \frac{1}{r} \frac{\partial}{\partial r} (r E_r) + \frac{1}{r} \frac{\partial E_\theta}{\partial \theta} + \frac{\partial E_z}{\partial z}$$

$$\vec{\nabla} \times \vec{E} = r \vec{rot} \vec{E} = \left(\frac{1}{r} \frac{\partial E_z}{\partial \theta} - \frac{\partial E_\theta}{\partial z} \right) \vec{u}_r + \left(\frac{\partial E_r}{\partial z} - \frac{\partial E_z}{\partial r} \right) \vec{u}_\theta + \left(\frac{1}{r} \frac{\partial}{\partial r} (r E_\theta) - \frac{1}{r} \frac{\partial E_r}{\partial \theta} \right) \vec{u}_z$$

In spherical Coordinates

Elementary displacement : $d\vec{OM} = dr \vec{u}_r + r d\theta \vec{u}_\theta + r \sin(\theta) d\phi \vec{u}_\phi$

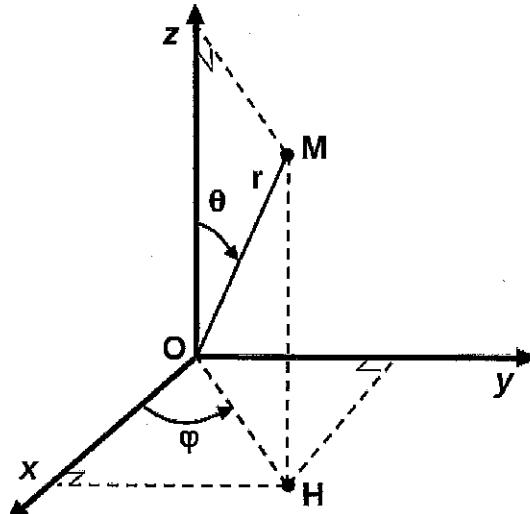


FIGURE 1: Spherical coordinate system

$$\vec{grad} U = \vec{\nabla} U = \frac{\partial U}{\partial r} \vec{u}_r + \frac{1}{r} \frac{\partial U}{\partial \theta} \vec{u}_\theta + \frac{1}{r \sin \theta} \frac{\partial U}{\partial \phi} \vec{u}_\phi$$

$$\operatorname{div} \vec{E} = \vec{\nabla} \cdot \vec{E} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 E_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta E_\theta) + \frac{1}{r \sin \theta} \frac{\partial E_\phi}{\partial \phi}$$

$$\begin{aligned} \vec{rot} \vec{E} = \vec{\nabla} \times \vec{E} = & \left\{ \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (E_\phi \sin \theta) - \frac{\partial E_\theta}{\partial \phi} \right] \right\} \vec{u}_r \\ & + \left\{ \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial E_r}{\partial \phi} - \frac{\partial}{\partial r} (r E_\phi) \right] \right\} \vec{u}_\theta \\ & + \left\{ \frac{1}{r} \left[\frac{\partial}{\partial r} (r E_\theta) - \frac{\partial E_r}{\partial \theta} \right] \right\} \vec{u}_\phi \end{aligned}$$