EFS ISN3 ‘
2°M¢ année - Janvier 2024
Durée totale : 2h
Documents autorisés : Synthése personnelle de 4 pages format A4 (2 feuilles).

— Le bareme est sur 20 points.

— Le sujet est sur [16] pages - il y a 5 exercices.

Exercice 1 : PIX (1 point)

Exercice 2 : APP (Evaluation par les pairs, 1 point)

Exercice 3 : QCM (9 points)

Attention ! Certaines questions admettent plusieurs réponses justes. Il faut toutes les
donner. Chaque mauvaise réponse est sanctionnée de -0.25 point

3.1 Dictionnaires (2 pts)

Nous considérons un dictionnaire person donné ci-dessous.

person = {
"name": "Alice",
"age": 25,
"city": "Wonderland"
}

(3.1) Quelles instructions Python permettent d’accéder a l'age de la personne ? (0.5 pts)

|:| person(’age’) I:I person.get(’age’, 42)
I:I person[’age’] I:I person.age

|:| person[1]

Correction :
person[’age’] et person.get(age,42) (0.25 chaque)

PCC - ASINSA - EURINSA - AMERINSA 2™ année Page 1

[y

~NOoO O~ WN

QOO ~NOOO A~ WNH

En utilisant le dictionnaire person_info ci-dessous, on affiche a I'écran la phrase Charlie lives
in Happyville.

person_info = {
"name": "Charlie",
"address": {
"street": "123 Main St",
"city": "Happyville"
}

(3.2) Lequel de ces codes fait cet affichage ? (0.5 pts)
I:I person_info[’city’]
|:| print (f"{person_info[’name’]} lives in {person_info[’city’]}")
|:| person_info[’address’] [’city’]
|:| print (f"{person_info[’name’]} lives in {person_info[’address’][’city’]}")

|:| print (person_info[’age’])

Correction :
print (f"person_info[’name’] lives in person_info[’address’] [’city’]")

Nous exécutons le code suivant :
d={

o 0 O
X 3 X0
R OoONUW

qpn
o x<

] 1
'1=3
] =28

(3.3) Quelle est alors la valeur de len(d) ? (0.5 pts)

|:| 5 |:| 6 I:l 7 I:l 8 I:l impossible de dire I:l un message d'erreur

Correction :
7 car élément avec la clé "k" existe déja, donc sa valeur va étre mise a jour avec |'instruction

d["k"] =3

PCC - ASINSA - EURINSA - AMERINSA 2™ année Page 2

©oO~NOOTHA~WN -

Nous exécutons le code suivant :

d={

X3 Ao
RN UW

}

s =0

for i in range(len(d)):
s += d[i]

print(s)

(3.4) Qu’est-ce qui va étre affiché lors de U'exécution? (0.5pts)

|:| 0 I:I 5 I:' 17 I:' impossible de dire I:I un message d'erreur

Correction :
un message d'erreur

PCC - ASINSA - EURINSA - AMERINSA 2™ année

Page 3

3.2 Propriétés de graphes (3 pts)

Soit G = (V, E)) un graphe non orienté.
(3.5) Quelles affirmations suivantes sont vraies ? (1pt)
|:| La matrice d'adjacence est toujours symétrique
|:| Le degré entrant d'un sommet est égal a son degré sortant
|:| Chaque paire de sommets est reliée par une aréte dirigée
|:| La somme des degrés est toujours paire
|:| Le nombre d'arcs est toujours pair

|:| Le degré d'un sommet est toujours supérieur au nombre de sommets

Correction :
La matrice d'adjacence est toujours symétrique, La somme des degrés est toujours paire. 0.5 pt

chacune

Soit p =< g, uy, ..., uy > un chemin simple dans un graphe non orienté G = (V, E).
(3.6) Quelles affirmations suivantes sont vraies ? (1 pts)
|:| La longueur de p est forcément inférieure a |V/|
|:| Vi,j < k,u; et u; sont connectés
I:I Vi < k,{u;,uiy1} € F
|:| Vi, g < k,u; # u;

Correction :
Les 3 premiéres sont vraies, la 4e est fausse (mais c'est trompeur par erreur). 1-0.25 par réponse

fausse

On consideére les séquences suivantes : a) 2347 b)333333 ¢)223335 d)2333

(3.7) Lesquelles peuvent étre les degrés des somumnets d’un graphe non-orienté ? (1 pt)

|:| La séquence a) |:| La séquence b) I:l La séquence c) |:| La séquence d)

PCC - ASINSA - EURINSA - AMERINSA 2™ année Page 4

Correction :
b et c. 0.5 pt chacune

Commenttaires :

Le degré est forcément plus petit que le nombre de sommets. Ca élimine "a"). Selon la formule
de la somme des degrés, pour un graphe simple non-orienté la somme de degrés est un nombre
pair. Ca élimine "d").

PCC - ASINSA - EURINSA - AMERINSA 2™ année Page 5

3.3 Parcours de graphe : BFS (3 pts)

Nous considérons le graphe Graph = (V, E) représenté ci-dessous, avec
V={ABC D E G HI, J K}

E = {(A B), (A4,G), (A1), (B,C), (B,H), (C,D), (D, E), (D, H), (E,H), (E,K), (G, H),
(G, 1), (G,J), (I,J), (J,K)}.

Lors d'un parcours en largeur, les sommets sont visités dans un certain ordre.

(3.8) Parmi les séquences ci-dessous, indiquez celle qui peut constituer un parcours en
largeur partant du somumet G. (1.5 pts)

| | canisiBcexkp |]| GAHJIBCDEK
| | carrsBDEKC | | GAHIJBCEKD

Correction :
GAHIJBDEKC

Soit T' I'arbre des prédécesseurs calculé lors de ce parcours en largeur.

(3.9) Parmi les affirmations suivantes, laquelle est vraie ? (0.5 pts)
|:| T permet de calculer le plus court chemin entre toute paire de sommets
|:| T permet de calculer le plus court chemin entre GG et tous les autres sommets
|:| T permet de calculer le plus court chemin entre les feuilles de T’

|:| T permet de calculer le plus long chemin sur le graphe

Correction :
T permet de calculer le plus court chemin entre GG et tous les autres sommets

PCC - ASINSA - EURINSA - AMERINSA 2™ année Page 6

On consideére le parcours en largeur (BFS) du graphe non-orienté G = (V| E) a partir du sommet 1.
V =1{1,2,3,4,5,6,7} et
E = {{17 2}v {17 3}7 {17 4}7 {27 4}? {27 5}7 {37 4}7 {47 5}7 {47 6}7 {57 6}7 {6> 7}}

(3.10) Parmi les arétes suivantes, lesquelles vont forcément faire partie de Uarbre pré-
décesseur? (1 pts)

[Joe [Jea [Jess [[Jusy []6e

Correction :

{1,4}

Commenttaires :
On peut représenter le graphe G de la facon graphique suivante :

N

Le sommet 1 est adjacents a 2, 3,4. Notons que |'ordre de parcours peut varier.
Ainsi, les arétes (1,2),(1,3),(1,4) vont toujours &tre inclus dans |'arbre prédécesseur.

Si c'est le sommet 2 qui est choisi ensuite, alors le sommet 5 va étre ajouté dans la file et c’est
I'aréte (2,5) qui va faire partie de I'arbre prédécesseur.

Cependant, si c'est le sommet 4 qui est traité avant, c’est toujours le sommet 5 qui va étre
ajouté dans la file mais c'est I'aréte (4,5) qui va faire partie de I'arbre.

Donc, la présence des arétes (2,5) et (4,5) dans |'arbre prédécesseur dépend de I'ordre dans
lequel les sommets 2 et 4 apparaissent dans la file.

I'aréte (5,6) peut ne pas étre choisie si le parcours commence d'abord par le noeud 4 et que le
parcours commencer par visiter le noeud 6

PCC - ASINSA - EURINSA - AMERINSA 2™ année Page 7

3.4 Appariement (1 pts)

Soit G = (AU B, E) avec |A| = |B| et E < A x B un graphe biparti. On calcule un appariement
avec |'algorithme de Gale-Shapley sur ce graphe en prenant en compte des préférences de A vers B
et des scores de B vers A.

(3.11) Quelles affirmations sont vraies ? (0.5 pts)

|:| Le colit total de I'appariement est minimal
|:| L'appariement est un couplage parfait
|:| L'appariement est stable

|:| Les participants sont toujours appariés a leur choix préféré.

Correction :
couplage parfait, appariement stable

Durant I'algorithme de Gale-Shapley, les éléments de A sont proposés aux éléments de B.
(3.12) Que se passe-t-il si un élément de B recoit plusieurs propositions ? (0.5 pts)
|:| [l rejette toutes les propositions
|:| Il accepte la premiere proposition et rejette les suivantes
|:| Il garde la proposition qu'il préfere

I:' Il accepte toutes les propositions successivement

Correction :
[l accepte la proposition de son choix préféré

Exercice 4 : Réflexions sur les arbres (3 points)

On considére un arbre non-orienté, G = (V, E).

(4.1) Quelest|E|, le nombre d’arcs de G ? (0.5pts)

[Jwve [Memn Tlwvi-1 []v])+1

PCC - ASINSA - EURINSA - AMERINSA 2™ année Page 8

Correction : |[V| —1

(4.2) Quevaut} . d(u), la somme des degrés de G ? (0.5pts)

Llwi=qvi-v [Jeer [J2e []viEg

Correction : 2|E|

On suppose que dans cet arbre 2 sommets sont de degré 4, 1 sommet est de degré 3, 2 sommets
sont de degré 2. Tous les autres sommets ont degré 1.

(4.3) En utilisant les réponses aux deux questions précédentes, calculez x, le nombre
de sommets de degré 1. Ecrivez votre raisonnement. (2 pts)

Correction :

Vi=2+2+1+2=2z+5 (0.25pt)

Ydu) =xx14+2%4+1%3+2%2=2x+ 15 (0.25pt)
|E| =|V|—1=z+4 (0.5pt)

>.d(u) =2|E| = z + 15 = 2z + 8 (0.5pt)

=z =7 (0.5pt)

Compter les points si raisonnement juste mais formules fausses aux questions précédentes et
que I'éléve se rend compte qu'il y a un probleme.

Si formules fausses et I'éleve rend un nombre non entier sans sourciller => 1pt max.

Accepter un dessin d'arbre qui marche (0.75pt) et un argument convaincant qui dit que c'est
plus général (0.75pt).

Exercice 5 : Algorithmique de graphe (6 points)

Soit G = (V, E') un graphe connexe non pondéré.

On définit le diamétre de G' comme la longueur du plus long plus court chemin :

D(G) = max dist(u,v)

u,veV

ou dist(u,v) est la longueur d'un plus court chemin de u a v.

Dans cet exercice, on va écrire un algorithme qui calcule le diamétre de G.

PCC - ASINSA - EURINSA - AMERINSA 2™ année Page 9

w N

© 00N OB

10

On considére que la fonction BFS(G,u) existe déja. Elle calcule un parcours en largeur de G en
partant d’'un sommet u donné en paramétre et renvoie |'arbre des prédécesseurs sous forme d'un
dictionnaire. Sa signature en python est la suivante :

def BFS(G,u):
Calcule un parcours BFS de G en partant de u et renvoie un dictionnaire représentant 1'arbre
des prédécesseurs

Entrées:
G : un dictionnaire représentant un graphe sous forme de listes d’adjacence
u : une clé du dictionnaire G représentant un sommet du graphe
Renvoie:
un dictionnaire dont les clés sont les sommets de G et les valeurs les prédécesseurs de
chaque sommet dans le parcours en partant de u. La valeur de la clé u est None.

Puisque GG est connexe, tous les sommets de GG seront dans |'arbre des prédécesseurs. On peut se
servir de cela dans la suite.

Les questions suivantes vous demandent d'écrire des fonctions pour arriver progressivement
au calcul du diameétre. Ecrivez les en python mais, si vous n'y arrivez pas, donnez un
pseudo-code qui décrit I'algorithme de la fonction, vous aurez une partie des points.

PCC - ASINSA - EURINSA - AMERINSA 2™ année Page 10

©oOo~NOO P~ WN

(5.1) Ecrivez la_fonction distance (v, T) qui prend en paramétre un somment v et Uarbre

des prédécesseurs obtenu par un appel a BFS(G,), olt u est un sommet de G, et
renvoie dist(u,v) = la longueur du plus court chemin de u & v obtenu en utilisant T

(3 pts)

def distance(v,T):
Renvoie dist(u,v) ol u est le sommet ayant servi a calculer T par un BFS
Entrées:
v : un sommet d’un graphe G
T : un dictionnaire obtenu par 1’appel a BFS(G,u)
Renvoie:
un entier valant la longueur du plus court chemin de u a v calculé en utilisant T
Correction :
1 def distance(v,T):
5 W
3 Renvoie dist(u,v) ou u est le sommet ayant servi a calculer T par un BFS
4 Entrées:
5 v : un sommet d’un graphe G
6 T : un dictionnaire obtenu par 1’'appel a BFS(G,u)
7 Renvoie:
8 un entier valant la longueur du plus court chemin de u a v calculé en utilisant T
q W
10 if T[v] == None :
11 d=20
12 else :
13 d =1 + distance(T[v],T)
14 return d
On accepte une version non récursive avec une boucle while.
1] def distance(v, T):
2 "’’Fonction qui calcule itérativement le plus court chemin vers un sommet
3 d’arrivee donné a partir de la connaissance des prédécesseurs
4 Args:
5 dico prec (dict) : prédécesseurs de chaque sommet
6 s (str) : le sommet d’arrivée
7 Return:
8 (dict) : le chemin vers le sommet d’arrivée
9 rr 7
10 d=20
11 while v != None:
12 d +=1
13 v = T[v]
14 return d - 1
Si malgré le conseil sur la connexité de G il y a un test sur le fait que v est dans T, on accepte.
* Si calcul du chemin (itératif ou récursif) puis calcul de la longueur de la liste => -0,5pt * algo
récursif du chemin avec cas de base qui renvoie 0 et appel récursif distance(u, T[u]) + [u] -2pt
(mélange de calcul de nombres + constitution de chemin * -0,5 si le cas de base de la racine
est oublié (mais pas sur I'appartenance a T ou pas)
Exemple :
Prenons un exemple du graphe ci-dessous :
PCC - ASINSA - EURINSA - AMERINSA 2™ année Page 11

OO~NOOOT S WN -

O N O D WN

7 AN
6 ‘ b, 4':
L /
4
donné par :
G={1:7(["2", '3", '6'],
2" ['1, '4'],
'3': ['17, '57],
47 ['27, '6'],
'57: ['37, '6’, '7'1,
767: [Ill’ I4I, 75I]’
'77: ['5']
}
Soit T = BFS(G, ’2’),alors: T = {’1’: °2’, °2’: None, ’3’: ’1’, ’4’: ’2’ ’5’:

)3))6):)17)7):)5)}

La distance entre '2" et '7" correspond donc au chemin 2" -> "1" -> '3' -> '5" -> '7". Donc la
distance est égale a 4.

Maintenant qu’on a une fonction qui donne la longueur d'un plus court chemin entre deux sommets,
on peut calculer I'excentricité d'un sommet u, c'est-a-dire la longueur du plus grand plus court
chemin partant de u : excentricite(u) = max,ey dist(u,v).

(5.2) Ecrivez la fonction ezcentricite(G,u) qui prend en paramétre le graphe G et un
sommet u et renvoie U'excentricité de u. Utilisez la_fonction distance de la question
précédente. (1.5 pt)

def excentricite(G,u):
Renvoie la longueur maximale d’un plus court chemin partant de u
Entrées:
G : un dictionnaire représentant un graphe sous forme de listes d’adjacence
u : une clé du dictionnaire G représentant un sommet du graphe
Renvoie:
un entier valant la longueur du plus long plus court chemin partant de u

Correction :
def excentricite(G,u):
Renvoie la longueur maximale d’un plus court chemin partant de u
Entrées:
G : un dictionnaire représentant un graphe sous forme de listes d’adjacence

u : une clé du dictionnaire G représentant un sommet du graphe

PCC - ASINSA - EURINSA - AMERINSA 2™ année Page 12

O~NOOTPAWN

Renvoie:
un entier valant la longueur du plus long plus court chemin partant de u

return e

-0.5 appels redondants a distance (pour le calcul du max) : exemple : si if distance(v,T) > e :
= distance(v,T)

-0.5 si T calculé dans la boucle for

-0.5 si pas d'appel du tout a BFS en debut de fonction (cas exclusif du precedent)

On accepte ['utilisation de max

Pas trop strict sur la syntaxe puisqu’on accepte le pseudo code

Vous pouvez maintenant calculer le diametre de G :
D(G) = max, yev dist(u,v) = max,ey excentricite(u).

(5.3) Ecrivez la fonction diametre (G) qui prend en paramétre le graphe G et renvoie son

diameétre. Utilisez la fonction ezcentricite de la question précédente. (1.5 pt)

def diametre(G):

Renvoie le diametre d’un graphe G
Entrées:
G : un dictionnaire représentant un graphe sous forme de listes d’adjacence
Renvoie:
un entier valant le diametre de G

© 0N WN)

=
N = O

Correction :

def diametre(G):
Renvoie le diametre d’un graphe G
Entrées:
G : un dictionnaire représentant un graphe sous forme de listes d’adjacence
Renvoie:
un entier valant le diametre de G
d=20
for u in G:
d = max(d,excentricite(G,u))
return d

0.5 pour la boucle for, 0.5 pour I'appel a excentricité, 0.25 pour le max (fonction ou fait maison),
0.25 si tout le reste est bon

(5.4) BONUS : le calcul de Uexcentricité tel qu’il est décomposé pourrait étre optimisé
pour réduire la quantité de calculs a faire. Pourquoi? Quels sont les calculs redon-
dants? (1 pt)

PCC - ASINSA - EURINSA - AMERINSA 2™ année Page 13

==

Correction :

Pour calculer la distance d'un sommet v a u, on calcule la distance de tous les ancétres de v.

On calcule la distance d'un sommet autant de fois qu'il a de descendants.

Si I'idée y est mais que c'est brouillon, donner le point quand méme. Si c'est presque bon, mais

un peu faux, aller jusqu'a 0.5

(5.5) BONUS : proposez une solution pour diminuer ces calculs redondants (1 pt pour

lidée, 3 pts pour une implémentation)

W N =

Correction (version récursive) :

def distance(v,T, memoire):
Renvoie dist(u,v) ol u est le sommet ayant servi a calculer T par un BFS. Met a jour
memoire pour chaque calcul intermédiaire de distance
Entrées:
v : un sommet d’un graphe G
T : un dictionnaire obtenu par 1’'appel a BFS(G,u)
memoire : un dictionnaire mémorisant les distances déja connues.
A minima memoire[ul==
Renvoie:
un entier valant la longueur du plus court chemin de u a v calculé en utilisant T
if v not in memoire :
memoire[v] = 1 + distance(T[v],T, memoire)
return memoire[v]

def excentricite(G,u):
Renvoie la longueur maximale d’un plus court chemin partant de u
Entrées:
G : un dictionnaire représentant un graphe sous forme de listes d’adjacence
u : une clé du dictionnaire G représentant un sommet du graphe
Renvoie:
un entier valant la longueur du plus long plus court chemin partant de u

T = BFS(G,u)
e =20
memoire = {u:0}
for v in G:
d = distance(v,T,memoire)
if d > e:
e=d
return e

W N =

H O O 0 ~NO G1p

Correction (version itérative) :

def distance(v,T, memoire):

Renvoie dist(u,v) ol u est le sommet ayant servi a calculer T par un BFS. Met a jour
memoire pour chaque calcul intermédiaire de distance

Entrées:
v : un sommet d’un graphe G
T : un dictionnaire obtenu par l'appel a BFS(G,u)
memoire : un dictionnaire mémorisant les distances déja connues.

A minima memoire[ul==

Renvoie:

un entier valant la longueur du plus court chemin de u a v calculé en utilisant T

PCC - ASINSA - EURINSA - AMERINSA 2™ année Page 14

chem = []
cur = v

while cur not in memoire.keys():
chem.insert (0, cur)
cur = T[cur]
d = memoire[cur]
for cur in chem:
d +=1
memoire[cur] = d

return memoire[v]

def excentricite(G,u):

Renvoie la longueur maximale d’un plus court chemin partant de u
Entrées:
G : un dictionnaire représentant un graphe sous forme de listes d’adjacence
u : une clé du dictionnaire G représentant un sommet du graphe
Renvoie:
un entier valant la longueur du plus long plus court chemin partant de u

T = BFS(G,u)
e =0
memoire = {u:0}
for v in G:
d = distance(v,T,memoire)
if d > e:
e=d
return e

O 0N OIS WN) =

Une autre maniére de calculer efficacement |'excentricité en partant du noeud u serait de faire
retourner a la fonction BFS, le dernier noeud traité. L'exeentriciuté dans ce cas n'est autre que
le calcul de la distance de ce dernier au noeud u

def BFS(G, u):
a traiter = [u]
dico prec = {

dico preclu

u

3
1 =
deja traites =

None
[

while len(a_traiter) > 0:
s = a traiter.pop(0)
deja traites.append(s)

if s in G.keys()
for si in G[s]:
if si not in deja_traites and si not in a_traiter:
a_traiter.append(si)
dico prec[si] = s

return dico prec, deja traites[-1]

def excentricite(G,u):

T, last = BFS(G,u)
d = distance(last,T)
return d

encore une maniere optimisée de trouver |'excentricité : le chemin le plus long du noeud u aux
feuilles de I'arbre T. Methode : 1/trouver les feuilles 2/trouver le chemin le plus loing reliant
une feuille a u

PCC - ASINSA - EURINSA - AMERINSA 2™ année Page 15

def excentricite(G,u):

T = BFS(G,u)
feuilles = []

for s in G:

if s not in T.values():

feuilles.append(s)

d max = 0
for f in feuilles:
d = distance(f, T)
if d > d max:
d max = d

return d_max

PCC - ASINSA - EURINSA - AMERINSA 2™ année

Page 16

	PIX (1 point)
	APP (Evaluation par les pairs, 1 point)
	QCM (9 points)
	Dictionnaires (2 pts)
	Propriétés de graphes (3 pts)
	Parcours de graphe : BFS (3 pts)
	Appariement (1 pts)

	Réflexions sur les arbres (3 points)
	Algorithmique de graphe (6 points)

