
END-OF-SEMESTER PHYSICS EXAM

The three exercises are independent. Hand-written formula sheet (one double-sided A4 page) and
calculator in exam mode authorized. Un-justified answers may not be taken into account. Make

sure your work is well presented and readable.

Formulae and useful constants :
Gradient in cylindrical coordinates : −→∇V =

−−→
grad(V ) = ∂V

∂r
−→ur + 1

r
∂V
∂θ

−→uθ + ∂V
∂z

−→uz
Divergence in cylindrical coordinates : −→∇ ·

−→
A = div

−→
A = 1

r
∂
∂r (rAr) +

1
r

∂Aθ
∂θ + ∂Az

∂z

Rotational in cylindrical coordinates :
−→
∇ ×

−→
A =

−→rot
−→
A =

(
1
r
∂Az
∂θ − ∂Aθ

∂z

)−→ur +
(
∂Ar
∂z − ∂Az

∂r

)−→uθ + (
1
r

∂
∂r (r Aθ)− 1

r
∂Ar
∂θ

)−→uz
ε0 =

1
36π .10

−9 Fm−1 ; ε = εrε0 ; µ0 = 4π · 10−7Hm−1

Conduction current in an ohmic conductor of conductivity γ : −→j c = nq−→v = γ
−→
E

Volume power density dissipated by Joule effect : wJ = γ
−→
E 2

Exercise 1: parallel-plate capacitor - From the static case to the quasi-
static assumption (≃ 10 points)

Figure 1: Parallel-plate capacitor with cir-

cular plates

We consider a parallel-plate capacitor which metal plates
are two disks, parallel, having the same axis Oz and of
surface S. The medium located between the plates is an
insulator (of conductivity γ = 0), of permittivity ε and of
magnetic permeability µ0.
With the capacitor initially discharged, it is placed in a cir-
cuit consisting of an ideal voltage generator of constant
emf U0 > 0, and of a series resistance R.
At the endof charging, the upper armature is chargedwith
positive charge Q0.
Numerical values : S = 12 mm2, e = 2 mm, U0 = 10 V

Question 1-1: Draw the electrical diagram used to charge this capacitor. Be sure to specify the
direction of connection of the fem U0 during charging.

Part I : the capacitor is assumed to be fully charged

Question 1-2: Specify, without calculation, the voltage uc = V (z = e) − V (z = 0) between the
capacitor’s plates after charging (no calculation needed here).

Question 1-3: Śtudy of the topography of −→E between the plates (symmetry(ies), invariance(s) and
consequence(s)).
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Question 1-4: Same question if, in addition, disks can be considered as infinite planes in the study
of symmetries and invariances.

For the rest of the exercise we’ll assume that the capacitor plates are very large compared to
the interplate distance e, so that edge effects can be neglected (the symmetry and invariance
properties are those of two disks of infinite radius). We’ll use the usual direct orthonormal
cylindrical coordinate system (−→ur,−→uθ,−→uz).

Question 1-5: Show that −→E between the plates is uniform .

Question 1-6: Derive the expression of −→E as a function of U0.

Question 1-7: Determine the expression of −→E as a function of Q0. Deduce the expression of the
capacitance C of this parallel-plate capacitor.

Question 1-8: In the casewhere the samepotential differenceU0 is imposed between the armatures,
how does the charge carried by the capacitor plates vary when ε varies?

Question 1-9:
Numerical application : determine the values of ∥−→E ∥ and ofQ0 in the two cases ε = ε0 and ε = 4ε0.

Question 1-10: [BONUS] Illustrate with a diagram the microscopic process at the origin of this dif-
ference in the two cases. ε = ε0 and ε = 4ε0.

Part II : the capacitor is in the process of being charged (it is not completely charged yet)

Important note : throughout this section, it is never useful or necessary to determine the
expression of q(t).

At a time t when the charge is not complete:

Question 1-11: Give and justify the expression of the Maxwell-Ampere equation valid between the
capacitor plates. Specify the type(s) of current(s) involved between the plates during the charging
phase.

Question 1-12: Give and justify the topography of the magnetic field that comes up between the
capacitor’s plates during charging. To do this, study the symmetries and invariances of currents in
the inter-plate space with the cylindrical coordinate system.

Question 1-13: Prove that −→B (r = 0) =
−→
0 .

Question 1-14: Prove that
−→
B = kr

dq(t)

dt
−→uθ

where k is a constant. The expression of k has to be determined as a function of variables among ε,
µ0 et S. Determine also its unit.

Question 1-15: Calculate the total magnetic energyWb stored in the capacitor at the time t.

Question 1-16: Deduce the self-inductance L of this capacitor.

Question 1-17: Numerical application: calculate L. Comment upon it.
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Part III : search for the
(−→
E tot,

−→
B tot

)
fields present in the capacitor in forced sinusoidal

regime

We are now interested in the case where the charge carried by the upper plate of the capacitor
varies sinusoidally according to the following law

q(t) = Q0 cosωt, corresponding to the complex form q(t) = Q0 e
jωt

Question 1-18: Deduce from the questions 7 and 14 the expressions of the complex representations,
noted −→

E 0(t) and
−→
B 1(t) respectively, of the electric and magnetic fields that exist between the plates

as a function of Q0, ω, S, ε and µ0 and r.

Question 1-19: To which result does the Maxwell-Faraday equation lead in this case?

We assume that −→E1(t) is the field to be added to −→
E0(t) so that −→E tot(t) =

−→
E 0(t) +

−→
E 1(t) veri-

fies Maxwell-Faraday equation. We look for a particular solution of Maxwell’s equations which
verifies −→E 1(t) = E1,z(r, t)

−→u z and
−→
E tot(r = 0, t) =

−→
E 0(t).

Question 1-20: Justify that the assumption made on the direction of −→E 1 is acceptable.

Question 1-21: Determine E1,z(r, t).

Question 1-22: What is the name of the physical phenomenon behind the existence of −→E 1?

Question 1-23: Determine the expression for the complex representation of the total current density
vector −→j tot that exists between the plates.
Compare with the solution given in question 11. Any comments?

Question 1-24: What equation must be satisfied by the correction−→B 2 to be added to
−→
B 1 if we want

to take −→E 1(r, t) into account?

Question 1-25: [BONUS] Do you think that
(−→
E 0 +

−→
E 1,

−→
B 1 +

−→
B 2

)
are the complex representations

of the total electromagnetic field
(−→
E tot,

−→
B tot

)
that settles in between the plates? Explain your an-

swer.
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Exercise 2: Induction-based position sensor (problem situation) (≃
3.5 points)

Consider the direct orthonormal Cartesian base (−→ux,−→uy,−→uz) linked to the laboratory reference
framework, with u⃗z the ascending vertical.

Figure 2: Principle of an induction-based

position sensor

A position sensor can be realized using the following sys-
tem:
A first coil BR (not represented in Fig.2) is connected to
a movable element (Rotor) which can rotate around the
vertical axis Oz. We want to measure its angular position
θ. This coil is supplied with a current iR.
In the fixed part (Stator) surrounding the Rotor, we place
two identical coils BS1 and BS2, with N turns of surface
area s, and orthogonal axesOx andOy respectively. They
are in an open circuit, so no current flows through them.
Moreover, the Ox axis of BS1 coincides with that of the
Rotor when it is in its zero angular position.
The surface area s of the coils BS1 and BS2 is small and
the coils are close to the Rotor. We therefore consider that the magnetic field −→

BR sent by the
coil BR through the coils BS1 and BS2 is uniform and is in the direction of the Rotor axis. Let’s
take −→

BR = BR(iR)
−→uR = KiR(t)

−→uR.
The voltages u1(t) and u2(t) respectively across each of the two stator coils, as defined in figure
2, are measured on both channels of an oscilloscope (input impedance considered infinite),
when the current iR is a sinusoidal current iR(t) = IM cos(ωt).

Question 2-1: The Rotor is at rest, but in any angular position θ to be determined.
Show that the position θ of the Rotor can be deduced from the measurement of the voltages u1 and
u2 and give the expression (or expressions, if there aremore than one) for determining θ as a function
of u1 and u2.

Question 2-2: What measurements should you take with your oscilloscope?

Question 2-3: What additional phenomenon occurs when the rotor rotates?

Question 2-4: Explain why this method could still give an approximation of the instantaneous
position θ(t) of the Rotor, even if the Rotor rotates at constant angular velocity θ̇ = Ω, as long as its
angular velocity verifies Ω ≪ ω.

Question 2-5: [BONUS] Suggest an alternative protocol for finding the θ(t) position of the Rotor
when the Rotor is in motion.
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Exercise 3: Magnetoresistance effet in Corbino disk (≃ 6.5 points)

Figure 3: System called Corbino disk

Points in space are identified by their coordinates (r, θ, z)
in the cylindrical coordinate system (−→u r,

−→u θ,
−→u z).

The Corbino disk is ahollow cylinder (for r<a) of axis (Oz),
small height c and of inner and outer radii a et b respec-
tively. It is made (for a<r<b) of a conductive material of
electrical conductivity γ. The electron density n of the con-
ductor is uniform.
This aim of this exercise is to study the effects of the ap-
plication of a magnetic field on the electrical properties of
the system.

I- Study of electrical conduction in the absence of a
magnetic field

Remark : The index 0 corresponds to the calculated parameters in absence of magnetic field.
A current source supplies the disk with a current of intensity I. Due to the geometry of the
Corbinodisk, it is assumed that the current flowswith a radial vector current density−→j0 (collinear
to −→ur). We consider also that −→j0 is invariant respecting to θ and z.

At a pointM(a < r < b, θ, 0 < z < c) inside of the conductor :

Question 3-1: With the help of a sketch, calculate −→j0 (M) as a function of the current I , r and c.

Question 3-2: Deduce the electric field −→
E0(M) by recalling Ohm’s local law.

Question 3-3: Determine the expression of the velocity −→v0(M) of the electrons in movement in the
conductor.

Question 3-4: Calculate the potential difference U0 = V (r = a)−V (r = b) between the inner and
outer surfaces (or walls) of the Corbino disk.

Question 3-5: Deduce the resistance R0 of the system in absence of magnetic field.

II- Resistance change in the presence of a magnetic field

The Corbino disk is now placed in a uniform and constant magnetic field oriented along −→uz−→
B (M) = B −→uz .
Even if the disk is not in movement, we assume that the study of the conduction inside of the
disk in presence of the magnetic field−→

B (M) can be carried-out using the principle of motional
induction. We assume also that the motional induction is caused by only the radial component
of the velocity of electrons −→v e = vr

−→u r.
In the presence of themagnetic field, once steady state is established, we assume that the radial
component of the velocity of electrons in presence of −→B (M) remains unchanged compared to
the case where −→

B (M) =
−→
0 i.e. −→v e = vr

−→u r =
−→v0(M).

Question 3-6: Calculate the induced electromotive field −→
Em(M).
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Question 3-7: Deduce the induced e.m.f. em.

Question 3-8: Calculate the induced current density vector −→jm(M) circulating inside of the disk,
using Ohm’s local law.

Question 3-9: Prove that the induced current Im corresponding to the flux of −→jm(M) through a
surface to be defined, is given by :

Im =
µIB

2π
ln

(
b

a

)
where µ is a constant characteristic of the conductor. The constant µ is called electrical mobility of
the electrons in this material. Not to be confused with magnetic permeability. You will express
µ as a function of the electrical parameters of the conductor.

Question 3-10: We define the induced resistance Rm =
em
Im

. Calculate the expression of Rm.
Justify the homogeneity of the result by dimensional analysis.

We quantify the influence of the application of the magnetic field by the magnetoresistance
coefficient defined by :

MR =
Pm

P0

where P0 and Pm correspond to the powers dissipated by Joule effect due to the two currents
densities −→j0 (M) and −→

jm(M) respectively.

Question 3-11: Determine P0 using two different methods.

Question 3-12: Show that :
MR = µ2B2

Question 3-13: Numerical Application : CalculateMR for the semiconductor material InAs having
electrons mobility µ = 3.3 m2V−1s−1 at 300 K and in the presence of magnetic field of modulus
B = 0.2 T. Comment.

Note: this system is usually used tomeasure themobility of charge carriers µ in semiconductor
materials, in the presence of a known magnetic field.

INSA Lyon, 2ème année February 2, 2024 Duration: 3h00 Page 6 of 6



IEFS-S3 - Physique - corrigé barème
FIMI

Année 2023-2024

Exercice 1 : Condensateur plan : de la statique à l’ARQS (39,5/80 + bonus 7,5) /39,5
Q1. U0 vers le haut (pointe vers z = e) (uniquement si on peut faire le lien à l’armature supérieur)

0,5

Q2. Uc =U0 0,5
Q3. invariance par rotation. (M , u⃗r , u⃗z ) de symétrie des charges, donc de E⃗(M) et Eθ = 0 : 0,5+1
E⃗(M) = Er (r, z)u⃗r +Ez (r, z)u⃗r 0,5
Q4. ∀M : on peut maintenant utiliser les plans suivants 0,5
de symétrie des charges, donc de E⃗ : (xM z) donc Ey (M) = 0 et (y M z), donc Ex (M) = 0 1
avec de plus invariances par toutes translations // à Ox ou O y : E⃗(M) = Ez (z)u⃗z 0,5
Q5. M-G, en tenant compte des invariances et en l’absence de charges entre les armatures :

di vE⃗ = 0 ⇔ dEz

dz
= 0, et Ez = cste : Ez est bien uniforme.

1,5

(ou encore l’équation de Poisson entre les armatures vérifie ∆V = 0 = d2V

dz2 , puisque pas de

charge entre les armatures et V (z) uniquement. Par intégration il vient donc V (z) = az + b, et

E⃗ =−−−−→
g r ad(−V ) = d(−V )

dz
u⃗z ⇒ Ez (z) =−a = cste)

Q6. Par circulation le long de (M z) : U0 =
∫ e

0
dV =

∫ e

0

−−−−→
g r ad(V ) · u⃗z dz =

∫ e

0
(−Ez )dz ⇔ Ez =−U0

e

1,5
(−1 signe fx)

Q7.Th. de Coulomb en z = e : Ez =−σ
ε
=−Q0

εS
, d’où avec Q6) : Ez =−Q0

εS
= U0

e
⇒C = Q0

U0
= εS

e

1,5+1
(−1 signe fx)

Q8. Q0 =CU0 = εS

e
U0 est une fonction croissante (linéaire - non exigée) de ε. 0,5

Q9. ∥E⃗∥ = |Ez | = U0
e = 10V

2×10−3m = 5000Vm−1, qui ne dépend que de U0 et de e, et reste inchangé. 1

C0 = ε0S

e
= 0,053pF = 5,3×10−14 F d’où Q0 =C0U0 = 5,3×10−13 C 1

C ′ = 4C0 = 2,1×10−13 F pour ε= 4ε0, et Q ′ = 4Q0 = 2,1×10−12 C (même faux cohérent)0,5

Q10.

bonus(0,5fig.
ε0

+1,5
2è
fig.)

Q11. Le diélectrique est isolant : pas de courant de conduction. 0,5

Par contre ici Ez (t ) et donc j⃗tot = j⃗D = ∂εEz

∂t
u⃗z ̸= 0. Le courant présent entre les armatures est le

courant de déplacement et M-A s’écrit
−−→
r ot

(
B⃗

µ0

)
=+∂εEz

∂t
u⃗z (autres expressions : voir aussi Q14)

1

Q12. j⃗tot = εdEz

dt
u⃗z est uniforme et vertical entre les armatures : ∀M entre les armatures, 1

1



IEFS-S3 - Physique - corrigé barème
FIMI

Année 2023-2024

(M , u⃗r , u⃗z ) est plan symétrie des courants, donc plan d’antisymétrie de B⃗(M , t ) 1
et B⃗(M , t ) = Bθ(r, z, t )u⃗θ, puisque de plus il y a invariance par rotation d’axe Oz (accepter inv. sur r
aussi)

1

Q13. Par application à (xOz) et (yOz), on trouve Bx (r = 0, z) = 0 = By (r = 0, z) respectivement.
Comme on avait déjà Bz (r, z) = 0, finalement B⃗(r = 0, z) = 0⃗.

1

Q14. Avec q(t ) à la place de Q0, il vient Ez =−q(t )

εS
et j⃗tot =− ε

εS

dq(t )

dt
u⃗z : 1

M-A s’écrit −µ0

S

dq(t )

dt
u⃗z =−∂Bθ

∂z
u⃗r + 1

r

∂

∂r
(r Bθ)u⃗z . On a donc

0,5
(0 si

−−→
r ot incomplet)

∂Bθ

∂z
= 0 : Bθ(r, t ) uniquement et

∂(r Bθ)

∂r
=−r

µ0

S

dq(t )

dt
. D’où r Bθ =−µ0

2S
r 2 dq(t )

dt
+ f (t ). f (t ) = 0 par

application à r = 0 et B⃗ = −r
µ0

2S

dq(t )

dt
u⃗θ (implique B⃗(r = 0) = 0⃗, mais pas utile dans la dém.) et

k =−µ0

2S
.Par la suite, compter juste tous les calculs cohérents qui en découlent (par ex. avec k)

2

Q15. Wb =
Ñ (

B⃗ 2

2µ0

)
dτ à intégrer sur le volume de l’espace inter-armature. 0,5

B⃗ 2

2µ0
dτ = µ0

8S2 r 2
(

dq(t )

dt

)2

dr r dθdz et Wb = 2πe
µ0

8S2

(
dq(t )

dt

)2 ∫ rmax

0
r 3dr = πe

µ0

4S2

(
dq(t )

dt

)2 r 4
max

4

(=πe
k2

µ0

(
dq(t )

dt

)2 r 4
max

4
avec k).

1,5

Avec S =πr 2
max , Wb =πe

k2

µ0

(
dq(t )

dt

)2 S2

4π2 =πe
µ0

4S2

(
dq(t )

dt

)2 S2

4π2 = e
µ0

16π

(
dq(t )

dt

)2
0,5

Q16. i = dq(t )

dt
et Wb = 1

2
Li 2, d’où L =−ek2S2

2πµ0
= eµ0

8π
1,5

Q17. AN : L = 10−10 H, très faible 1+0,5

Q18.
−→
E 0 =−Q0

εS
e jωt u⃗z et

−→
B 1 = j rωkQ0 e jωt u⃗θ =− j rω

µ0Q0

2S
e jωt u⃗θ 0,5+1

Q19.
−−→
r ot

(−→
E 0

)
=−∂

−→
B 1

∂t
⇔ 0⃗ =− j 2ω2r

µ0Q0

2S
e jωt u⃗θ. 1

M-F n’est pas vérifiée :
(−→

E 0,
−→
B 1

)
ne peut pas être le champ élmg entre les armatures 0,5

Q20. Les liens entre les symétries de
−→
E tot et celles de sa source −∂

−→
B 1

∂t
sont du même type qu’entre

B⃗ et les courants, puisque même type d’équation aux dérivées partielles :
bonus(1)

∀M entre les armatures, (M , u⃗r , u⃗z ) est un plan d’antisymétrie de −∂
−→
B 1

∂t
, donc plan de symétrie de

−→
E , et Eθ(M) = 0 : c’est bien vérifié avec

−→
E = E z u⃗z (bonus : mais on ne montre pas que E r = 0 aussi)

2+bonus(0,5)

(Le raisonnement suivant est aussi à valoriser, même si incomplet : d’après
−−→
r ot

(
E⃗

) = −∂B⃗1

∂t
, sa

source −∂B⃗1

∂t
tourne autour de E⃗ et E⃗ = Ez u⃗z

(1sur
les
2)

Q21.
−→
E tot =−→

E 0(t )+E 1,z (r, t )u⃗z avec
−→
E 0(t ) uniforme impliquent

−−→
r ot

(
E⃗

)=−∂E1,z

∂r
u⃗θ. D’où M-F 1

⇔
∂E 1,z

∂r
= +rω2µ0Q0

2S
e jωt et E 1,z = r 2ω2µ0Q0

4S
e jωt +Ea(t ), avec Ea = 0 car

−→
E tot (r = 0, t ) = −→

E 0(t )

(ou avec k : E 1,z =−r 2ω2 kQ0

2
e jωt ).

1,5

Q22. C’est l’induction statique. 0,5+0,5

Q23. Toujours pas de courant de conduction, et
−→
j tot =−→

j D =
∂εE tot ,z

∂t
u⃗z avec

E tot ,z = E 0,z +E 1,z =
(
−Q0

εS
+ r 2ω2µ0Q0

4S

)
e jωt : j

tot ,z
= jω

(
−Q0

S
+ r 2ω2 εµ0Q0

4S

)
e jωt = j

0
+ j

1
. 1

E⃗ modifié, d’où
−→
j tot =−→

j D modifié, ou bien on vérifie la loi de Lenz qualitative 0,5

2
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Une correction en ω2 s’ajoute au 1er terme. On peut remarquer que

∣∣∣∣∣ j
1

j
0

∣∣∣∣∣ = 1

4
r 2ω2εµ0 = εr

4

r 2ω2

c2 .

La correction ne devient significative qu’à HF : à BF tq ω≪ωmax = c

rmax
on a

∣∣∣∣∣ j
1

j
0

∣∣∣∣∣≪ 1

bonus(2)

Q24.
−−→
r ot

(−→
B 1 +−→

B 2

µ0

)
=+

∂ε
(
E z,0 +E z,1

)
∂t

u⃗z =
(

j
0
+ j

1

)
u⃗z .

0,5

Comme
−−→
r ot

(−→
B 1

µ0

)
=+

∂εE z,0

∂t
u⃗z = j

0
u⃗z , il reste

−−→
r ot

(−→
B 2

µ0

)
=+

∂εE z,1

∂t
u⃗z = j

1
u⃗z = jω3r 2 εµ0Q0

4S
e jωt u⃗z

(avec k :
−−→
r ot

(−→
B 2

µ0

)
=− jω3r 2 εkQ0

2
e jωt u⃗z )

1

Q25.
−→
B 1(t ) est à la source de la correction

−→
E 1(t ) à

−→
E 0(t ) ; le terme correctif

−→
E 1(t ) est à la source

de l’ajout d’un terme correctif
−→
B 2(t ), qui de même devrait être à la source d’un nouveau terme

correctif
−→
E 2(t ), qui va conduire à un terme correctif suivant

−→
B 3(t ), et ainsi de suite.

bonus(1)

Pour trouver
(−→

E tot (t ),
−→
B tot (t )

)
, on doit déterminer la suite des termes correctifs

(−→
E n(t ),

−→
B n(t )

)
et

en déduire la série

(∞∑
0

−→
E n(t ),

∞∑
1

−→
B n(t )

)
=

(−→
E tot (t ),

−→
B tot (t )

)
.

bonus(1)

Exercice 2 : capteur de position par induction (14/80 + bonus 2) /14

Q1. Les bobines statoriques sont le siège d’une induction statique : u1 =−dΦ1

dt
et u2 =−dΦ2

dt
. 1

Comme B⃗R est considéré comme uniforme, on a simplementΦ1 = Nϕ1 = N BR u⃗R · sn⃗1. 1
Vu le sens de l’enroulement de la bobine BS1 sur la figure 2, on doit prendre n⃗1 =+u⃗x pour respec-
ter la définition de u1 sur la figure 2. uniquement si justifié :

1

On a doncΦ1 = N sK iR (t )cosθ et u1 = N sK iMωcosθ sin(ωt ) 1,5
De mêmeΦ2 = N BR u⃗R · sn⃗2 0,5
avec n⃗2 =+u⃗y pour respecter le sens de l’enroulement de BS2 et la définition de u2 sur la figure 2.
uniquement si justifié :

1

SoitΦ2 = N sK iR (t )sinθ et u2 = N sK iMωcosθ sin(ωt ) 1

Finalement on a par exemple
u2

u1
= sinθ

cosθ
= tanθ 1

Q2. Il suffit donc de mesurer u1(t ) et u2(t ). 0,5
De plus, d’après l’étude précédente, on a trouvé u1(t ) et u2(t ) en phase et la meilleure précision
pour tanθ sera obtenue en déterminant la tension crête-crête des voies 1 et 2.

1

Q3. Toujours induction statique mais 2 sources de variations de B⃗ : iR (t ) et θ(t ) 0,5
Q4. On a toujoursΦ1 = N sK iM cos(ωt )cosθ(t ), 0,5
d’où u1 =−N sK iM

(−ωsin(ωt )cosθ(t )− θ̇cos(ωt )sinθ(t )
)
. 1

De même u2 =−N sK iM
(−ωsin(ωt )sinθ(t )+ θ̇cos(ωt )cosθ(t )

)
1

Le 2ème terme est d’ordre de grandeur négligeable si θ̇ =Ω≪ω : 1
avec cette approximation, on retrouve la même loi que en Q1). 0,5
Q5. [BONUS] on pourrait imaginer une alimentation du Rotor en courant continu : alors la seule
variation dans le temps est lié à θ(t ).
On aurait Φ1 = N sK iM cosθ(t ), u1 = N sK iM θ̇ sinθ(t ), et de même Φ2 = N sK iM sinθ(t ),

u2 =−N sK iM θ̇cosθ(t ), et finalement tanθ =−u1

u2

bonus(2)

Exercice 3 : disque de Corbino (26,5/80) /26,5
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Q1. I0 =
Ï

(S)

−→
j0(M).n⃗ dS, avec dS = r dθ d z, n⃗ = +u⃗r dans le sens de la flèche de I, et

−→
j0(M) = j0(r )−→ur (radial, ne dépend ni de z ni de θ).

(dont 0,5 pour explication sens de +u⃗r ) 1,5

I0 =
∫ c

0

∫ 2π

0
j0(r ).r dθ d z = 2πr c j0(r ) ⇔ j0(r ) = I0

2πr c

(dans la suite prendre en compte les calculs cohérents
avec j⃗0 trouvé) 1

Q2. Loi d’Ohm Local :
−→
j0(M) = γ−→E0(M) et

−→
E0(M) =

−→
j0(M)

γ
= I0

2πγr c
−→ur

1

Q3.
−→
j0(M) = n.q.−→v0(M) =−en−→v0(M), d’où −→v0(M) =−

−→
j0(M)

ne
=− I0

2πner c
−→ur

1

Q4. dV =−−→E0(M) ·−→dℓ avec
−→
dℓ= dr−→ur + r dθ−→uθ+d z−→uz d’où dV =−E0(r ).dr =− I0

2πγc

dr

r
1,5

U0 =V (r = a)−V (r = b) =
∫ V (r=a)

V (r=b)
dV =− I0

2πγc

∫ a

b

dr

r
= I0

2πγc

∫ b

a

dr

r
= I0

2πγc
ln

b

a
(−1 signe faux)1,5

Q5. On est en convention récepteur (vu les sens de calculs utilisés précédemment), 0,5

d’où U0 = R0I0 = I0

2πγc
ln

b

a
⇔ R0 =

ln
b

a
2πγc

(0,5 si cohérent mais R0 < 0)1

Q6. E⃗m = v⃗e ∧ B⃗ =−B v0(r )u⃗θ =
I B

2πner c
u⃗θ 1,5

Q7. On utilise la circulation sur un cercle de rayon r 0,5

ei nd (de sens +u⃗θ ; non exigé) vérifie ei nd =
∫ 2π

θ=0
E⃗m ·−→dℓ avec

−→
dℓ= r dθu⃗θ. 1

ei nd =
∫ 2π

θ=0

I B

2πner c
r dθ = I B

nec
1

Q8. Loi d’Ohm Local appliquée à E⃗m :
−→
jm(M) = γ−→Em(M) = γ I B

2πner c
u⃗θ 1

Q9. On calcule le flux de
−→
jm à travers une section droite du matériau perpendiculaire à

−→
jm , donc à

travers l’intersection du matériau par un plan méridien (θ = cste) : (0,5 si surface utilisée pas explicite)1
Avec n⃗ = u⃗θ, on calcule Im (de flèche dans le sens de u⃗θ ; non exigé), et dS = dr d z :

Im =
∫ b

r=a

∫ c

z=0

γI B

2πner c
u⃗θ · u⃗θdr d z : Im = γI B

2πne
[lnr ]b

a = γI B

2πne
ln

(
b

a

)
, et µ= γ

ne

1,5

Q10. Rm = ei nd

Im
=

I B
nec

γI B
2πne ln

(
b

a

) = 2π

γc ln
(

b
a

) (= 2π

µnec ln
(

b
a

) si on garde µ) (0,5 si cohérent mais Rm < 0)1

de dimension di m(Rm) = 1

Ldi m(γ)
, cohérent avec di m(R) = di m

(
ρℓ

S

)
= L

L2di m(γ)
. 1,5

Q11. P0 = R0I 2 = ln b
a

2πγc
I 2 1

2ème méthode : en utilisant la densité volumique de puissance dissipée par effet Joule :
dP0 = γE⃗ 2

0 dτ avec dτ= dr r dθd z.
1

Il vient dP0 = γ
(

I

2πγc

)2 dr

r
dθd z et P0 =

∫ b

r=a

∫ 2π

θ=0

∫ c

z=0
dP0 = I 2

2πγc
ln

(
b

a

)
1,5

Q12. De même il vient (par ex.) Pm = Rm I 2
m = 2π

γc ln
(

b
a

) (
γI B

2πne
ln

(
b

a

))2

= γI 2B 2

2πn2e2c
ln

(
b

a

)
1

d’où MR =
γI 2B 2

2πn2e2c ln
(

b
a

)
I 2

2πγc ln
(

b
a

) = γ2B 2

n2e2 . On retrouve bien MR =µ2B 2 avec µ= γ

ne

1,5

Q13. AN : MR = (3.3×0.2)2 = 44%, ce qui est significatif : l’effet Joule dissipé par l’effet de magnéto-
résistance représente environ la moitié de celui en l’absence de B.

1+0,5
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