END-OF-SEMESTER PHYSICS EXAM

The three exercises are independent. Hand-written formula sheet (one double-sided A4 page) and
calculator in exam mode authorized. Un-justified answers may not be taken into account. Make
sure your work is well presented and readable.

Formulae and useful constants:

Gradient in cylindrical coordinates : YV = grad(V) = &y + L g + 9Vl
Divergence in cylindrical coordinates: V - A = divA = 19 (rA,) + 1% 4 94

Rotational in cylindrical coordinates :

Vo A=vot A = (188 - o) @ 4 (% — )i+ (L2(r Ap) - L)

€0 = ﬁ.lo_gFm_l ; € = &r&o ; o = 4m - 107" Hm™!

i ; - . —
Conduction current in an ohmic conductor of conductivity v : j . = ngv = ,Yﬁ
Volume power density dissipated by Joule effect: w; = 732

Exercise 1: parallel-plate capacitor - From the static case to the quasi-
static assumption (~ 10 points)

We consider a parallel-plate capacitor which metal plates

are two disks, parallel, having the same axis Oz and of z

surface S. The medium located between the plates is an A

insulator (of conductivity v = 0), of permittivity € and of .
magnetic permeability 1. S __”I .
With the capacitor initially discharged, it is placed in a cir- c B 077 E Y
cuit consisting of an ideal voltage generator of constant T——

emf Uy > 0, and of a series resistance R.
At the end of charging, the upper armature is charged with ~ Figure 1: Parallel-plate capacitor with cir-
positive charge Q. cular plates

Numerical values : S = 12 mm?, e = 2 mm, Uy = 10 V

Question 1-1:  Draw the electrical diagram used to charge this capacitor. Be sure to specify the
direction of connection of the fem Uy during charging.

Part | : the capacitor is assumed to be fully charged

Question 1-2:  Specify, without calculation, the voltage u. = V(z = e) — V(z = 0) between the
capacitor’s plates after charging (no calculation needed here).

Question 1-3: Study of the topography of f between the plates (symmetry(ies), invariance(s) and
consequence(s)).
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Question 1-4: Same question if, in addition, disks can be considered as infinite planes in the study
of symmetries and invariances.

For the rest of the exercise we'll assume that the capacitor plates are very large compared to
the interplate distance e, so that edge effects can be neglected (the symmetry and invariance
properties are those of two disks of infinite radius). We'll use the usual direct orthonormal
cylindrical coordinate system (w7, ug, w3 ).

Question 1-5: Show that E between the plates is uniform .
Question 1-6: Derive the expression of Easa function of Uy.

Question 1-7: Determine the expression of B as a function of QQy. Deduce the expression of the
capacitance C of this parallel-plate capacitor.

Question 1-8: Inthe case where the same potential difference Uy is imposed between the armatures,
how does the charge carried by the capacitor plates vary when ¢ varies?

Question 1-9:
Numerical application : determine the values of HEH and of Qo in the two cases € = ¢y and € = 4ey.

Question 1-10: [BONUS] lllustrate with a diagram the microscopic process at the origin of this dif-
ference in the two cases. € = ¢y and € = 4e,,.

Part Il : the capacitor is in the process of being charged (it is not completely charged yet)

Important note : throughout this section, it is never useful or necessary to determine the
expression of ¢(t).

At a time ¢t when the charge is not complete:

Question 1-11: Give and justify the expression of the Maxwell-Ampere equation valid between the
capacitor plates. Specify the type(s) of current(s) involved between the plates during the charging
phase.

Question 1-12: Give and justify the topography of the magnetic field that comes up between the
capacitor’s plates during charging. To do this, study the symmetries and invariances of currents in
the inter-plate space with the cylindrical coordinate system.

. —
Question 1-13: Prove that ?(r =0)=0.

Question 1-14: Prove that
dq(t)
ﬁ =kr——=u
at "’
where k is a constant. The expression of k has to be determined as a function of variables among e,
1o et S. Determine also its unit.

Question 1-15: Calculate the total magnetic energy W), stored in the capacitor at the time t.
Question 1-16: Deduce the self-inductance L of this capacitor.

Question 1-17: Numerical application: calculate L. Comment upon it.
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Part lll : search for the (?tot, Bt0t> fields present in the capacitor in forced sinusoidal
regime

We are now interested in the case where the charge carried by the upper plate of the capacitor
varies sinusoidally according to the following law

q(t) = Qocoswt, corresponding to the complex form ¢(t) = Qo eIt

Question 1-18: Deduce from the questions 7 and 14 the expressions of the complex representations,
noted E(t) and El (t) respectively, of the electric and magnetic fields that exist between the plates
as a function of Qo, w, S, € and o and r.

Question 1-19: To which result does the Maxwell-Faraday equation lead in this case?

We assume that E(t) is the field to be added to @(t) so that Etot(t) = Eo(t) + El(t) veri-
fies Maxwell-Faraday equation. We look for a particular solution of Maxwell's equations which
verifies E1(t) = B, (r,t) - and B o (r = 0,1) = Eq(t).

Question 1-20: Justify that the assumption made on the direction of El is acceptable.
Question 1-21: Determine E, ,(r,1).
Question 1-22: What is the name of the physical phenomenon behind the existence of El?

Questign 1-23: Determine the expression for the complex representation of the total current density
vector j ¢ that exists between the plates.
Compare with the solution given in question 11. Any comments?

Question 1-24: What equation must be satisfied by the correction Ez to be added to El if we want
to take El(r, t) into account?

Question 1-25: [BONUS] Do you think that (Eo + El, El + Eg) are the complex representations

of the total electromagnetic field (Etot, Etot) that settles in between the plates? Explain your an-
swer.
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Exercise 2: Induction-based position sensor (problem situation) (~
3.5 points)

Consider the direct orthonormal Cartesian base (3, u;, 1) linked to the laboratory reference

framework, with . the ascending vertical.

A position sensor can be realized using the following sys-

tem:

A first coil Zr (not represented in Fig.2) is connected to

a movable element (Rotor) which can rotate around the

vertical axis Oz. We want to measure its angular position

6. This coil is supplied with a current ip.

In the fixed part (Stator) surrounding the Rotor, we place

two identical coils Zs1 and %go, with N turns of surface

area s, and orthogonal axes Ox and Oy respectively. They

are in an open circuit, so no current flows through them.

Moreover, the Ox axis of 4 coincides with that of the

Rotor when it is in its zero angular position. Figure 2: Principle of an induction-based

The surface area s of the coils %g; and g5 is small and position sensor

the coils are close to the Rotor. We therefore consider that the magnetic field E; sent by the

coil ABr through the coils Z¢1 and Zs- is uniform and is in the direction of the Rotor axis. Let's

take By, = Br(ip)ih = Kin(t)ig.

The voltages u; (t) and us(t) respectively across each of the two stator coils, as defined in figure

2, are measured on both channels of an oscilloscope (input impedance considered infinite),

when the current iy is a sinusoidal current ig(t) = Ips cos(wt).

Question 2-1: The Rotor is at rest, but in any angular position 6 to be determined.

Show that the position 6 of the Rotor can be deduced from the measurement of the voltages u, and
ug and give the expression (or expressions, if there are more than one) for determining 6 as a function
of uy and us.

Question 2-2: What measurements should you take with your oscilloscope?
Question 2-3: What additional phenomenon occurs when the rotor rotates?

Question 2-4: Explain why this method could still give an approximation of the instantaneous
position 6(t) of the Rotor, even if the Rotor rotates at constant angular velocity 8 = €, as long as its
angular velocity verifies Q0 < w.

Question 2-5: [BONUS] Suggest an alternative protocol for finding the 6(t) position of the Rotor
when the Rotor is in motion.
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Exercise 3: Magnetoresistance effet in Corbino disk (~ 6.5 points)

Z A

Points in space are identified by their coordinates (r, 0, z)

in the cylindrical coordinate system (., Wy, ).

The Corbino disk is a hollow cylinder (for r<a) of axis (Oz),
small height ¢ and of inner and outer radii a et b respec-
tively. It is made (for a<r<b) of a conductive material of 4
electrical conductivity 7. The electron density n of the con- ¢

ductor is uniform. ' . |
This aim of this exercise is to study the effects of the ap- \\\::_":///
plication of a magnetic field on the electrical properties of

Figure 3: System called Corbino disk
the system.

I- Study of electrical conduction in the absence of a
magnetic field

Remark: The index ( corresponds to the calculated parameters in absence of magnetic field.
A current source supplies the disk with a current of intensity I. Due to the geometry of the
Corbino disk, itis assumed that the current flows with a radial vector current density 70) (collinear
to ;). We consider also that % is invariant respecting to ¢ and z.

At a point M(a <r < b,6,0 < z < ¢) inside of the conductor :
Question 3-1: With the help of a sketch, calculate %(M ) as a function of the current I, r and c.
Question 3-2: Deduce the electric field F?S(M ) by recalling Ohm’s local law.

Question 3-3: Determine the expression of the velocity vG (M) of the electrons in movement in the
conductor.

Question 3-4: Calculate the potential difference Uy = V (r = a) — V (r = b) between the inner and
outer surfaces (or walls) of the Corbino disk.

Question 3-5: Deduce the resistance Ry of the system in absence of magnetic field.

II- Resistance change in the presence of a magnetic field

The Corbino disk is now placed in a uniform and constant magnetic field oriented along u,
B(M) =B

Even if the disk is not in movement, we assume that the study of the conduction inside of the
disk in presence of the magnetic field ?(M) can be carried-out using the principle of motional
induction. We assume also that the motional induction is caused by only the radial component
of the velocity of electrons ¥, = v, U ;.

In the presence of the magnetic field, once steady state is established, we assume that the radial
component of the velocity of electrons in presence of ?(M) remains unchanged compared to
the case where B(M) = 0 i.e. Te = v, @, = 55 (M).

Question 3-6: Calculate the induced electromotive field E,Z(M ).
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Question 3-7: Deduce the induced e.m.f. ep,.

Question 3-8: Calculate the induced current density vector j_>m(M ) circulating inside of the disk,
using Ohm’s local law.

Question 3-9: Prove that the induced current I,, corresponding to the flux of an}(M ) through a
surface to be defined, is given by :
ulB < b)
I, =——In|( -
2w a

where 1 is a constant characteristic of the conductor. The constant y.is called electrical mobility of
the electrons in this material. Not to be confused with magnetic permeability. You will express
1 as a function of the electrical parameters of the conductor.

Question 3-10: We define the induced resistance R, = j—m. Calculate the expression of R,,.
m

Justify the homogeneity of the result by dimensional analysis.

We quantify the influence of the application of the magnetic field by the magnetoresistance

coefficient defined by :
P,
MR=—
R 2
where Py and P, correspond to the powers dissipated by Joule effect due to the two currents

L= — .
densities jo (M) and j,, (M) respectively.
Question 3-11: Determine P, using two different methods.
Question 3-12: Show that :
MR = ;*B?

Question 3-13: Numerical Application : Calculate M R for the semiconductor material InAs having
electrons mobility ;. = 3.3 m?V—1s~! at 300 K and in the presence of magnetic field of modulus
B = 0.2 T. Comment.

Note: this system is usually used to measure the mobility of charge carriers p in semiconductor
materials, in the presence of a known magnetic field.

INSA Lyon, 2°™¢ année February 2, 2024 Duration: 3h00 Page 6 of 6



INSTITUT NATIONAL
APPLIQUEES . e 2 N
wor  IEFS-S3 - Physique - corrigé bareme Année 2023-2024

FIMI

Exercice 1 : Condensateur plan : de la statique a ’ARQS (39,5/80 + bonus 7,5) /39,5
QL. Up vers le haut (pointe vers z = e) (uniquement si on peut faire le lien a I'armature supérieur)
0,5
Q2.U.=U 0,5
Q3. invariance par rotation. (M, ii,, ii;) de symétrie des charges, donc de E(M) et Eg =0 : 0,5+1
E(M) = E;(r, 2)lly + E (1, 2) 0,5
Q4. Y M : on peut maintenant utiliser les plans suivants 0,5
de symétrie des charges, donc de E : (xMz) donc Ey(M) =0et(yMz), donc Ex(M) =0 1
avec de plus invariances par toutes translations // a Ox ou Oy : E (M) =E,(2)u, 0,5
Q5. M-G, en tenant compte des invariances et en 1'absence de charges entre les armatures : L
- dE )
divE=0< q £ =0, et E, = cste: E, est bien uniforme.
z
2
(ou encore I'équation de Poisson entre les armatures vérifie AV = 0 = —, puisque pas de
z
charge entre les armatures et V(z) uniquement. Par intégration il vient donc V(z) = az+ b, et
. — d(-v
E=grad(-V)= =" U, = E,(z)=—a=cste)
] ) e [N R e U 1,5
Q6. Par circulation le long de (Mz) : Uy =f0 dv =[) grad(V)-i,dz =j; (-Ey)dz e E, = Y (~1signe fx)
) o Qo ., . . Qo U Qo &S 1,5+1
Q7.Th. de Coulombenz=e: E, = —2 = ~s’ dottavec Q6) : E, = s o >C= 70 = (~1signe fx)
eS
Q8. Qo = CUp = — Uy est une fonction croissante (linéaire - non exigée) de €. 0,5
e
Q9. ||E|| = |E,| = % = 2xigy3m =5000Vm™~!, qui ne dépend que de Uj et de e, et reste inchangé. 1
€0S
Co=—-22=0,053pF=5,3x 10" F d'ot1 Qp = CoUp = 5,3 x 10713C 1
e
C'=4Cy=2,1x10"3Fpour e =4¢gp, et Q' =4Qp=2,1x10712C (méme faux cohérent)0,5
bonus|(0,5fig.
€0
+1,5
2¢
fig.)
Q10.
Q11. Le diélectrique est isolant : pas de courant de conduction. 0,5
- - O¢E
Par contre ici E;(¢) et donc j;or = jp = atz ti; # 0. Le courant présent entre les armatures est le
1
. i | B O¢E; . . :
courant de déplacement et M-A s’écrit rot M_ =+ a7 U, (autres expressions : voir aussi Q14)
0
Q12. fmt = Ed_tz i, est uniforme et vertical entre les armatures : VM entre les armatures, 1
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(M, iiy, i) est plan symétrie des courants, donc plan d’antisymétrie de B(M, t) 1
et B (M, t) = Bg(r, z, t) i, puisque de plus il y a invariance par rotation d’axe Oz (accepter inv. sur r 1
aussi)
Q13. Par application a (xOz) et (yOz), on trouve By(r = 0,z) = 0 = By(r = 0, z) respectivement. 1
Comme on avait déja B,(r, z) = 0, finalement E(r =0,2)=0
= e dq(t
Q14. Avec ¢q(t) ala place de Qo, il vient E, = —L) et jror = ——ﬂﬁz : 1
&S eS dt
4 Mo dq(t) . 0By .. o . 0,5
M-A s’écrit —?Tuz = _E -+ ——r(r Bg)ii,. On a donc (0'si rof incomplet)
0B B d
- =0: By(r, t) uniquement et o 9) rﬁﬂ.D’ou rBg = _& —r? q( 2 + f(1). f(£) =0 par
0z d@( 5 S dt 28
application a r =0 et B = Z; Z ilg (implique B(r = 0) = 0, mais pas utile dans la dém.) et 2
k= _,u_ .Par la suite, compter juste tous les calculs cohérents qui en découlent (par ex. avec k)
Q15. Wy, = f f f ( ) dt aintégrer sur le volume de I'espace inter-armature. 0,5
dq(t dq())\? [Tmax dg(n\?ri
dT - B r2( q( )) drrdfdz et W, = 2z ( q( )) f rdr = netl (—q( )) -nax
2,uo 852 dt 852\ ar 0 482\ dt 4 1,5
k? (dq(t
(=me— ( q( )) m’” avec k).
to \ dt 4 )
k? (dgq(n)* S dq(t) dq(t))
Avec S=mr2, ., Wp=me— — =7e =e —_ 0,5
max b~ Ho( de ) 4m? 432( dt ) 4m? 1671( dt
dq(t ek’S* e
Q16.i = da@ . W, = —Liz, dotl L=— _ ko 1.5
dt 2nug  8m
Q17.AN:L=10"1"H, trés faible 1+0,5
QI18. Eg= —Q—S e/t i, et B1 = jrokQyel?! iip = ]rwug—go e/t 0,5+1
. 0B .
Q19. rot(ﬁo) —a—tlc»O— ]szrMOQ el iiy. 1
M-F n’est pas vérifiée : ( Eo, B 1) ne peut pas étre le champ élmg entre les armatures 0,5
- 0B
Q20. Les liens entre les symétries de E ;,; et celles de sa source _a;tl sont du méme type qu’entre bonus(1)
B et les courants, puisque méme type d’équation aux dérivées partielles :
VM entrel M, iy, ii lan d’antisymétrie de — 22, donc plan de symétrie d
entre les armatures, (M, ii,, ii;) est un plan d’antisymétrie de ——5, » doncplande symétriede | , o) o 0,5)
E, et E4(M) = 0: c’est bien vérifié avec E = E ii, (bonus : mais on ne montre pas que E, = 0 aussi)
— . 0B
(Le raisonnement suivant est aussi a valoriser, méme si incomplet : d’apres rot(E) = _6_;' sa l(lsur
es
031 =3 =3 . 2)
source ~ 57 tourne autourde Eet E=E, i,
—_— J— —_— —_— > aE
Q21. Etor = Eo()+E, (1, 1) ti; avec Eo(t) uniforme impliquent rot(E) =— O:Z tlg. D’ou M-F 1
—DE _ +ra)2'uO—Qoef“” etE,  =r1° ZHOQO e/t L E, (1), avec E, = 0 car E;o;(r =0,1) = Eo(t) L
r )
. — 2,2 QO jwt
(ouaveck:E, ,=-rw°——e/?").
Q22. C’est'induction stathue 0,5+0,5
. . - s aEEtot Z -
Q23. Toujours pas de courant de conduction, et j ;o; = j p = ——=—— Uiz avec
Qo | » 2H0Qo . Qo 2 2 EH0Qo
Etorp=Ege+Ey o= |- pgtret e/ = o\ g+t T e = 4 !
E modifié, d’otx J tor = j p modifié, ou bien on vérifie la loi de Lenz qualitative 0,5
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. 9 . J 1,, Er r2w?
Une correction en w” s’ajoute au ler terme. On peut remarquer que | = | = —r“w“eflo = ——
I, ' 4 c bonus|(2)
c J
La correction ne devient significative qu'a HF : a BF tq w < @ a5 = ona|=|«1
T'max ]
Lo
_(Bi+ By _ %¢(EcotEa 05
24. rot| ————| = u:('+')ﬁ ’
Q ,UO ) Y z=\J, 1] z
B 0cE B 0cE
Comme rot | =% | = +——=22 U, = ] ii,, ilreste rot =2y 21 =] iy = jodr?——— 'UOQO el?t g
Ho ot Ho ot = 1
(B ek .
(avec k : rot =2 = —jwsrzﬁeﬂ”t i)
Ho 2
Q25. B (t) est a la source de la correction E;(f) a Eo(?); le terme correctif E; () est a la source
de 'ajout d'un terme correctif B»(f), qui de méme devrait étre a la source d’'un nouveau terme | bonus{(1)
correctif E,(t), qui va conduire a un terme correctif suivant B 3(¢), et ainsi de suite.
Pour trouver (E tor (1), Em[(t)), on doit déterminer la suite des termes correctifs (En(t), En(t)) et
o _, oo _, - - bonus|(1)
en déduire la série (Z En(0),). Qn(t)) = (E ror(D), ﬁm(t)).
0 1
Exercice 2 : capteur de position par induction (14/80 + bonus 2) /14
) ) N } ) ) ) do, dd, 1
Q1. Les bobines statoriques sont le siege d'une induction statique : u; = “dr et up = 4
Comme By, est considéré comme uniforme, on a simplement ®; = N¢, = NBgiig - s;. 1
Vu le sens de 'enroulement de la bobine #s; sur la figure 2, on doit prendre 71, = +ii, pour respec- 1
ter la définition de u; sur la figure 2. uniquement si justifié :
On adonc ®; = NsKig(t)cosb et u; = NsKipwcosOsin(wt) 1,5
De méme ®, = NBglig - silp 0,5
avec 7ip = +1iy, pour respecter le sens de I'enroulement de Zs; et la définition de u, sur la figure 2. 1
uniquement si justifié :
Soit ®» = NsKigr(t)sinf et up = NsKipwcosOsin(wt) 1
. up; sin6 1
Finalement on a par exemple — = =tan6
u; cosf
Q2. Il suffit donc de mesurer u; (t) et uy (). 0,5
De plus, d’apres I'étude précédente, on a trouvé u; (t) et uy(t) en phase et la meilleure précision 1
pour tan @ sera obtenue en déterminant la tension créte-créte des voies 1 et 2.
Q3. Toujours induction statique mais 2 sources de variations de B:i r(H) etO(1) 0,5
Q4. On a toujours ®; = NsKip;cos(wt) cosO(t), 0,5
d’olt u; = —NsKip (—wsin(wt) cos0(t) — 0 cos(wt) sin(1)). 1
De méme up = —NsKiy (—wsin(w?) sinf(t) + 0 cos(wt) cos (1)) 1
Le 2éme terme est d’ordre de grandeur négligeablesif = Q < w : 1
avec cette approximation, on retrouve la méme loi que en Q1). 0,5
Q5. [BONUS] on pourrait imaginer une alimentation du Rotor en courant continu : alors la seule
variation dans le temps est lié a (). b %)
On aurait ®; = NsKiycosO(t), u; = NsKipyOsinf(t), et de méme ®, = NsKiysinf (1), onus
. u
uy = —NsKip0cosf(t), et finalement tanf = St
up
Exercice 3 : disque de Corbino (26,5/80) | 1265 |
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QL Iy = f %(M).ﬁdS, avec dS = rdf dz, i = +u, dans le sens de la fleche de I, et
)

résistance représente environ la moitié de celui en I’absence de B.

_ (dont 0,5 pour explication sens de b ur)|1,5
jo(M) = jo(r)u, (radial, ne dépend ni de z ni de 0).
¢ rem ) ) I, (dans la suite prendre en compte les calculs cohérents
Ip :fo \ Jo(r).rd@ dz =2nrcjo(r) © jo(r) = Zre Avec ]0 trouved 1
—_ —_ —_ 1 M I —_
Q2. Loi 'Ohm Local : Jg(M) = yEg(M) et By = 2080 = 1o & 1
Y 2nyrc
e — — , . — jo (M) Iy, _.
Q3. jo(M) = n.q.vo(M) = —envo(M), d’our vo(M):—]0 - 1
ne 2nnerc —2
—_ —_ —_ —_ — — r
Q4.dV =—Ey(M)-d¥f avecd¥l =dru, +rdOug+dzu, doudV = —Ey(r).dr = —2”(;/67 L5
Vir=a) Iy (%dr Iy [(bdr I b -
Uo=V(r:a)—V(r:b)=f av = ——> == - 0 jp2  (~lsignefaux)l,5
V(r=bh) 2nycty v 2mnyclta r  27myc a
Q5. On est en convention récepteur (vu les sens de calculs utilisés précédemment), 0,5
b
. Iy b In P (0,5 si cohérent mais Ry < 0)1
d’ou U():R()IO =——In— <:>R0 =
2nyc  a 2myc
= L = . IB
Q6. E,y = Do AB =—Buy(r)iig = iig 1,5
2mnerc
Q7. On utilise la circulation sur un cercle de rayon r 0,5
27
eind (de sens +1ig; non exigé) vérifie e;, g = [ Em- d( avec d[ =rdBig. 1
6=0
2 IB IB
€ind = f rdf=— 1
=0 2TTNerc nec 2
Q8. Loi d’Ohm Local appliquée a Em jm(M) = yE_)m (M) =y tig 1
. 2nnerc _
Q9. On calcule le flux de j,, a travers une section droite du matériau perpendiculaire a j,;, donc a
travers l'intersection du matériau par un plan méridien (8 = cste) : (0,5 si surface utilisée pas explicite)1
Avec 7 = Uy, on calcule I, (de fleche dans le sens de iig; non exigé), et dS = drdz :
IB IB (b 1,5
Iy, = f [ g - tlgdrdz: Im—L[lnr]Z: Y 1n(—),etu=l
r=aJz=0 27merc 2nne 2nne a ne
Q10.R,, = ; = ”ec Py = 2n - (= 2n - si on garde ) (0,5 si cohérent mais R, < 0)1
IB b b
m Ztme 1“(5) ycln(a) ,unecln(u)
. . . 1 . . . (p? L 15
de dimension dim(R,;,) = ————, cohérentavecdim(R) =dim|— | = ————. )
Ldim(y) S ) IL?dim(y)
) ln% ) 1
Ql1. Py = RyI? = I
2myc
2éme méthode : en utilisant la densité volumique de puissance dissipée par effet Joule :
=9 1
dPy =yEjdt avecdt =drrdfdz.
I \?dr ? b
Ilvienth():)/( ) —dezetPozf f ln(—) 1.5
2nyc) r aJo= 27ryc a ’
2n IB _ (b)\* I°B? b
Q12. De méme il vient (par ex.) Py, =Rm1,2n= —( 14 ln(—)) = Y—“ln(—) 1
ycln( ) 2nne \a 2nn2e’c \a
YEB? (b
vl 08 2B2 1
d'ott MR = ZEE¢ (a) - Y2 Onretrouve bien MR = u?B? avec p = s &
2 ( b ) n?e? ne
2nyc a
Q13.AN: MR = (3.3x0.2)? = 44%, ce qui est significatif : I'effet Joule dissipé par I'effet de magnéto- 1405




