PHYSICS END-OF-SEMESTER TEST

The three exercises are independent. One double-sided handwritten A4 form and calculator are
allowed. Any unjustified result will not be taken into account. Make sure the copy is well
presented and legible.

A formula sheet is provided at the end of this document, useful for all three exercises.
1 Modeling a high-voltage line

In simplified terms, a high-voltage line can be seen as a system consisting of a cable (a cylinder)
and the earth (a plane), as shown in the figure 1 on the left. The permittivity at any point in the
system is fixed at €.

1.1 Study of the cable without earth

Initially, we will look at the cable alone (without the earth) modelled by a solid cylinder of infinite
length, radius a and carrying a uniform surface load o > 0.

Question 1-1: By defining a suitable coordinate system, determine the electric field E that it creates
throughout space.

Question 1-2 : Deduce the electric potential V' at any point in space. It will be assumed to be equal
toVyatr =a.

1.2 Modelling the high-voltage line

To study the high-voltage line, we will use a model consisting of two parallel cables, similar to the
previous one, one carrying a surface charge ¢ and the other —o (Figure 1, right). It is assumed
that the distance 2h separating the two cables is very large compared with the radius a of the
cable. The Cartesian coordinate system is that shown in Figure 1.
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FIGURE 1: High-voltage line above Earth (left) and associated electrostatic model (right)

Question 1-3 : Study the symmetries and invariances of this new system.
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We place ourselves in the plane such that + = 0, and with 0 < y < h.

Question 1-4.: From the result obtained in question 1.1, express the electric field produced by each cable
as a function of the variable y in the portion of plane considered.

Question 1-5 : Deduce the total electric field Er of this system in the considered area.

In relation with electrostatic induction, the earth acquires a charge density o due to the pre-
sence of the cable.

Question 1-6 : Calculate o at any point with coordinates (0,0, z) assuming that the earth is a
perfect conductor.

2 Asynchronous motor or induction motor

An asynchronous motor is an AC machine that converts electrical energy into mechanical energy.
It consists of a moving circuit, called the rotor, which rotates inside a fixed circuit, called the sta-
tor.

The model shown in Figure 2 consists of a moving closed rectangular loop or current loop
(the rotor, at the center of the figure), immersed in the magnetic fields B; (t) = Bycos(wot) @y
and B(t) = Bysin(wot)i, produced respectively by the two stator coils (S1) and (S2). The
superposition of these two fields creates a rotating magnetic field B, of constant norm, but
whose direction rotates in the (zOy) plane around the axis Oz and forms an angle wot with
the direction u, at time ¢ (see figure 2).

Throughout the problem, the rectangular loop, of normal 7 contained in the (xOy) plane, ro-
tates around the Oz axis in the same direction of rotation as B(t), but at a constant angular
velocity w different from wy. é(t) is uniform over the entire (small) surface S of the loop. The
rectangular loop has an electrical resistance R and a self-inductance L.

i(t)

(00000 00000000000

(S))

FIGURE 2: asynchronous machine
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2.1 Principle of the asynchronous machine

In the entire problem, we're focusing on the steady state, i.e. when the angular velocity w is
constant. In this harmonic regime, time-varying electrical quantities can be expressed as
complex quantities.

Question 2-1: Express the flux ®(t) of the magnetic field passing through the rectangular loop (or
rotor) as a function of By, S,wo and w.

Question 2-2 : Derive the expression of the induced electromotive force (e.m.f.) e;nq(t).

Question 2-3: Putthe expression e, ;(t), which is the complex expression of e;,4(t), into the form :
Cind = emef(wﬁt*%), and deduce the expressions of e, . and we.

Question 2-4: Write the electrical equation that applies to the rectangular loop. Write this equation
in the form : e;,, = Z i;,4(t), with Z = |Z|e’¥ and deduce the expressions for Z, |Z| and ¢ as a
function of R, L, and we.

Question 2-5: Deduce the real expression i;nq(t) of i,,4(t), as a function of ey, |Z|, ¢, we and ..

Question 2-6 : Define the magnetic moment m of the rectangular loop through which a current i
flows. Indicate the relevant quantities on a diagram.

Question 2-7: Explain qualitatively why the rectangular loop is driven into rotation when the coils
(S1) and (S2) are energized and produce the rotating magnetic field B(t).

Question 2-8 : Express the instantaneous moment ./, (t) of the magnetic forces acting on the loop
of Figure 2 with respect to the axis Oz as a function of e,,, S, By, L, R and we.

Question 2-9 : Express the time average (/) of .. (t) as a function of the same parameters as
for question 2-8.

2.2 Ayschronous motor operating conditions running with no load

In the following questions, you can use Figure 3, which shows the evolution of the normalized
mean moment (torque) applied to the rotor as a function of its angular velocity.

Question 2-10: Which range of angular velocities w of the rectangular loop corresponds to operation in motor mode
of the machine ? What can be said about the starting torque (w = 0)?

Question 2-11: For w = wy, What is (.#) ? Interpret this value.

Question 2-12 : (BONUS) What happens to the rotational speed of the rotor if the motor is under
load with a resisting moment (.#, .. ) = —0.2 (., .. )? Why s it called an asynchronous motor?

res.
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FIGURE 3: Evolution of average moment (torque) as a function of rotor angular velocity

3 Charging cars on inductive roads

3.1 Creation of the magnetic field of the inductor

Let's consider an electric car, equipped with an induction charging system” : the car drives over
a coil buried in the asphalt to recover its autonomy (see figure 4).

All numerical values are gathered at the end of the exercise.

The inductor coil buried in the road consists of N; turns through which a current i; flows, each
describing a rectangle of length D and width W. The stack of N; turns spreads over a height H
(see figure 4).

First, we'll simplify the coil in order to evaluate the magnetic field it produces. To do this, we
choose to neglect the width 1V of the coil (and therefore the inductive effect of portions of
the coil perpendicular to the road) and to reduce it to two planes parallel to the (zOz) plane,

assumed infinite in directions parallel to u, and ., and intersecting the (Oy) axis at y = %

andy = —% (see figure 5). Surface currents flow through these planes such that :
Ez—kkﬁx fory:—% (1)
l;’:—kﬁx fory:—i-% (2)

with & > 0. In the whole space, permeability is uo.

1. This system is still at the experimental stage. See https ://www.incit-ev.eu/ for more information
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FIGURE 5: Coil model : two parallel planes with a surface current density

Question 3-1: Determine the relationship between Ny, i1, H and k.

Question 3-2 : From the symmetries and invariances of this global distribution of surface current
consisting of the two infinite planes, determine the topology of the magnetic field B; they create.

Question 3-3 : Using symmetry considerations, give a relationship between the magnetic field com-
ponents of By(y = yo) and B (y = —yo), yo € R*.

We now consider only one of the planes, specifically the one passing through y = —%.

Question 3-4 : By a rigorous and complete study, determine the magnetic field By created by this
single plane in all space.

Question 3-5: Deduce the expression of the magnetic field El created in the whole space by the
two planes. Check that the result agrees with that of questions 3.2 and 3.3.
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Question 3-6 : Assuming that the magnetic field of the real (non-infinite) coil is the same as that
studied previously, deduce the self-inductance L, of the inducting coil as a function of H, W, D, N;
and po.

The magnetic field of the coil studied previously is picked up by a flat square coil, of vertical
normal, placed under the car. It forms the induction receiver of this system and will be referred
to as “circuit 2". This induced coil, with surface area S, comprising N» turns, self-inductance Lo,
and resistance Ry, is connected to an accumulator, modelled by a capacitor of capacitance Cs.
The current 4; flowing in the inductor coil is now sinusoidal, of angular frequency w, so that the
magnetic field captured by the induced coil is of the form:

Bi = B1V2 cos(wt) i,

This magnetic field will be assumed to be uniform throughout circuit 2.
The car travels at a constant speed ¥ = vy . In the following, we'll assume that all of circuit 2
is immersed in the magnetic field of the inductor.

Question 3-7: Justify that motion induction doesn’t play any role in this situation.

Question 3-8 : Determine the expression of the electromotive force (e.m.f.) e2(t) induced by the
inductor on circuit 2 when the entire surface S of the induced coil is above the inductor coil. Express
this voltage in complex notation : e,(t).

Question 3-9 : Draw an electrical diagram of the induced circuit including the accumulator. Give
the complex literal expression of the induced current is.

In the rest of the exercise, we set the conditions such that LyCow? = 1.

Question 3-10 : What effect does this assumption have on the relationship between the current i,
flowing in the induced circuit and the voltage e, ?

Question 3-11: The generic expression for the active power P, developed by a section of circuit
through which a current i flows and across which a voltage w is measured, is :

Py = Uefler cosp

where Uey and I.g are the RMS amplitudes of voltage w and current i, and ¢ the phase shift between
these two quantities.
Give the numerical value of P», the active power supplied by the induction phenomenon in circuit 2.

Question 3-12:

Assuming that all the electrical energy accumulated when crossing the recharging zone is recovered
and stored in the battery, numerically evaluate this quantity of energy, and the number of additional
kilometers of range gained by the car.

Question 3-13 : Suggest improvements to this system (bonus).

Numerical data for this exercise :

— Car velocity vg : 110km/h

— Dimensions of the inductor coil : D = 1000m, H = 10cm, W =1m

— RMS value of the magnetic field picked up by the receiving coil : 0.24 mT.
— Number of turns of the inductor coil : N7y = 1000
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— Number of turns of the induced coil : Ny = 60

— Surface area of the induced coil : S = 0.1 m?.

— Frequency of the current in the inductor : 85k H 2.

— Resistance of the induced circuit: Ry = 1002

— As reminder: pg = 4710~ " Hm™!

— Energy consumption of an electric car : 20 kWh for 100 km
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Formula sheet (Note : not all formulas are useful)

Divergence in cylindrical coordinates :

=2 = = 10 10Ey OFE,
dwE—V-E—;E(rET)-F;iaH + .
Divergence in spherical coordinates :
R - o 1 0 9 1 0 ) 1 8E¢
=V -£FE=—— r _— 0 E, —
divE=V-E r28r(T E)—i_rsineaﬂ(szn 0)+Tsin¢9 0]

Rotational in cylindrical coordinates :

. = . [10E. OE)\ . [(0E, OE.\ . (10 10E,\
TOtE_VAE_<r89_az)ur+<8z_8r)u9+<7“87“(rE9)_r89)u2

Rotational in spherical coordinates :

—»7—» —»7 1 a . aE@ —
TOtE—V/\E—{TSZTLG {%(E(psmﬁ)— :|} r

1 1 OF, 0 .
- — —(rE
+ {r [sin@ dy or (r “D)} } 0

4 {i [(,fr(rE@) - aa%] }u;

Trigonometric formulas :

cosa.cosb = 1 [cos(a — b) + cos(a + b)]

sina.sinb = 1 [cos(a — b) — cos(a + b)]

cosa.sinb = % [sin(a + b) — sin(a — b)]
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Note pour tout le sujet : pas de points si résultat sans unité.

Champ électrique créé par deux fils infinis chargés Points Total/
ques-
tion

Q1-1. On se place dans un repére cylindrique d'axe z correspondant a I'axe du cylindre 0,5

Tout plan (M, @,,4,) est plan de symétrie de la distribution de charges, donc de E et le champ 1.5 (-1

E(M) est contenu dans ce plan, donc E - iig = Fyg =0 par

Tout plan (M, @, Wy) est plan de symétrie de la distribution de charges (fils infinis), et E, =0 erreur)

Finalement E = E,(r,0, 2) i,

Invariances en 6 et z, ce qui aboutit a : E = E,.(r) i, 1 3

On utilise I'équation de Maxwell-Gauss : divE = %

Ici, p =0 car on n’a que des charges surfaciques 1

. o . 10

Avec la divergence en coordonnées cylindriques, il vient : fa—(r E)=0=rE.(r>a)=Aet 15

ror

rE,.(r < a) = Ag avec A et Ay des constantes

Avecr =0 ou E(O) = 0 (car 20y, yOz et Oz sont plans de symétrie des charges, donc de F, 1

d'ott E,(0) =0 = E,(O) = E,(O) respectivement) : Ag =0

relation de passageen r =a : A(sE}) =ot, = eoE(at)—0=ep— =0

a

Er>a)=22q, 1,5 5

eqr _ _ _

Q1-2. A partirde £ = -V = -9V 1

On détermine V par intégration. Condition aux limites : V(r < a) = V. On trouve 1 2

ac T .

Virza)=V—-—In (7> par continuité en r = a

€0 a

Q1-3. invariance sur z uniquement (fils infinis) : 0.5. (zOz) plan d’antisymétrie des charges : 0.5. 2

(yOz) plan de symétrie des charges : 0.5. VM, (zMy) plan de symétrie des charges et de E:05

Bonus : E = E, d, dans le plan z =0 Bonus:2 | 2 (+2
Bo-
nus)

Q1-4. avec Fq créé par 01 = +o0 et Ey créé par o9 = —0 :

Bitri=h—y) = —27 (C@)) et Bolrs = h+) = —24=7) (42 2% 1 2

i\rn=n—-y)= —Uu 2(T2 = Yy)= U
eo(h—y)" eo(h+y)"
Q1-5. Th. de superposition : E(0,y,z) = E1(r1) + Ea(r2) 05
. - ac 2h N

[l vient E(0,y, z) = gm(fuy) 0,5 1

Q1-6. Th. de Coulomb ou bien Relations de passage en M a la surface du conducteur :

E(M;y ) = 0 puisque dans conducteur a I'équilibre électrostatique. 1

A(EH) = 6:> E”(Mg'_) = 6

A(EEL) = opit = B(M{) = By(M) + EL (M) = B, (M{) = Z—Tﬁ 2

0

(0,0, 2) est a la surface de la Terre considérée comme un conducteur, de normale 7 = i,

or - 20a 2a0

— iy, = E(0,0,2) = —— iy = op = ——— 1 4

£ Uy ( ) ,Z) € huy or h

Total pour cette partie : 19 +

2
bonus

Moteur asynchrone Points Total/
ques-
tion
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le rotor est accroché sur le champ magnétique.)

Q2-1. ®(t) = ffspire B. cﬁ comme le champ est considéré comme uniforme sur la spire cela 2
donne ByS cos((B, 7)) = ®(t) = ByS cos((wo — w)t)
bonus : ici on n'utilise B = B%? car el , est pris en compte avec la donnée de L de la spire bonus 1 2
do(t
Q2-2. ejpg = —% = (wy — w)BpS sin((wy — w)t). 1 1
Q2-3. ey, = (wo —w)BoS, e = § et we = wp —w 0,54+1+0,5 2
. di(t
Q2-4. eima(t) = Ri(t) + L0
En régime harmonique : e, ;(t) = (R + jLwe)i;,4(t) 1
L
d'ott Z = R+ jLwe, |Z| = /B2 + (Lw. )2 et tan g = ;C 1 2
T
. Cind _ Cm Jwet—5—¢) ) e
Q5. g = S = e = isna(t) = Re (ialt)) = 7 coslot = 5 — )
e
= Gina(t) = ﬁ sin(wet — @) 15
remarque : le calcul se fait aussi & partir des représentations algébriques des complexes :
. Cind _ m . N (wet
Lind = ; = m (R — jLwe) (—j) €7tV
Vo . e .
d'ol iing = Re(iing) = Wz%ﬂ (Rsin(wet) — Lwe cos(wet)) 15
e
Q2-6. m = 1S7. Le schéma doit montrer le sens positif choisi pour le courant et la normale 1(-0,5 1
orientée qui en résulte. par oubli)
Q2-7. La variation de flux magnétique a travers la spire, due a la rotation du champ magnétique 2 (-0,5
engendre une f.é.m. induite (induction statique), elle méme & I'origine d'un courant induit. La spire | par oubli)
parcourue par un courant et plongée dans le champ magnétique uniforme est soumise a des
forces de Laplace dont I'action la met en mouvement de rotation. Elle est soumise au
couple de moment résultant .2 (t) = m(t) A B(t).
On peut aussi invoquer la régle du flux maximum et dire que la boucle de courant abandonnée aux 2
forces de Laplace évolue de maniére 3 maximiser le flux. Elle cherche donc a aligner sa normale
avec la direction du champ magnétique. Donc elle tourne et cherche a la rattraper.
Q2-8. A (t) = i1naSTi A B = i3,gS By sin(wet) .
SB SB
= M,(t) = 6m|Z| 0 sin(wet — ) sin(wet) (ou encore = 67;|Z| 0 [cosp — cos(2wet — ¢)]) 2
(Remarque : Comme cosp = — et sinp = ﬁ, aprés développement on obtient par ex. (ou toute
e SB |Z| ‘Z| expression
My, = =" _[Rsin(wet) — L t)] sin(wet) mais I'expression de la ligne précédente équiva-
= R L2 [Rsin(wet) — Lw, cos(wet)] sin(wet) mais |'expressi igne p te)
suffit)
bonus : ici on ne prend pas en compte Ep dans .# car contribue uniquement au torseurs des bonus 0,5 2
forces intérieures, or ///:nt =0
1 1
Q2-9. (cos(2wet — ¢)) = 0, ou bien fOT“ cos(wet) sin(wet) dt = 0 et T fOT“‘ sin?(wet) dt = 3
e
emS By we(SBg)? cos ¢ Rw,(SBy)?
d M) = 2 = = 1,5 1,5
one (A=) = =71 o8¢ 2 1Z]  2(R?+ L%w?)
Q2-10. Le couple est moteur pour (#,) > 0 < 0 < w < wo, 1
le rotor est toujours un peu en retard sur le champ magnétique. bonus 0,5
Au démarrage, le couple est bien moteur et le moteur peut démarrer, sauf si un couple résistant 0,5 1,5
trop important est présent quelque part (supérieur a 0.6 Aqz) bonus 0,5
Q2-11. Le couple est nul : frontiére entre le fonctionnement moteur et génératrice (non exigible : 1 1
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Q2-12. BONUS : Si on a un couple résistant (#,,,, ) = —0.2 (4., ), le rotor se stabilisera a bonus 1

>0é</</;/lz>>0.2. On voit

sur la figure que le point de fonctionnement va remonter sur la partie verticale de la courbe
jusqu'a une valeur du moment moyen normalisé de 0.2 et que par conséquent la vitesse angulaire
w va prendre une valeur légérement inférieure a wy. Le rotor tourne donc légérement moins vite
que le champ magnétique, d'oli le nom de moteur asynchrone.

Surbonus : On remarque qu'en raison de la vitesse relative du rotor (I'induit) par rapport au
champ magnétique, on est en présence d'un phénoméne d'induction mutuelle.

une vitesse telle que le couple total est nul, soit (#Z,) + (A,

Zrés.

Total de cette partie : 17.5
+
bonus
35
Exercice 3 : Recharge des voitures électrique sur des portions de route inductrices (27,5/63 + Points Total/
bonus 1) ques-
tion
Q3-1. Nyiy = [[J- @, dS = [ k-i,dz & Nyiy = kH 1 1
Q3-2. dans le modeéle nappes de courant paralléles a (xOz) infinies :
invariances par toutes translations colinéaires a i, et i, : él( ) 0,5
(xMy) plan de symétrie des densités de courants k et k', donc d’ antisymétrie de B et 1 (&tre 1,5
Bi(M) = By.(y)i. exigeant)
Q3-3. (xOz) plan d'antisymétrie des densités de courants, donc de symétrie de B et 1 1
Bi.(—y) = Bi.(y) (les composantes || de B; sont des fonctions paires)
Q3-4. On a toujours By(y) par invariances, (zMy) plan d'antisymétrie de By et 0,5

BO(M) = By. (y)ﬁz

B 1 9By, 1 dBy. - .
dés lors r_oz>€ 2= 220 Uy = — 0z i M: 0 (pas de courant volumique), 1,5
% po Oy " po dy
d'ou By, (y > —%‘2 = cstel = Bf et By, (y < — %) = cste2 = By 0,5
par ailleurs y = — plan de symétrie de k, donc d'antisymétrie de By, d’ou B, = —Bar (éq1-By) 1
— w
Relation de passage sur AB) en y = —— conduit a 0,5
2 expression
générale
correcte
Bo.(y = —W- Bo.(y = —W_
="y BeW="T) 0 pa nd, = ki o BY — B P98 = ok 1 5

Ho Ho

Q3-5. l% créé par k' se déduit de By en remplacant k par k. =—k:
ok, pok

on utilise le Th. de superposition en distinguant les zones de I'espace y < 5 Ty <y < - et 0,5

W

7 < y, on trouve :

/ k k
Bl,z(y<f%):BO—+BO—:J%+%:0, 1,5
'~ pok | pok
B]_Z( %<y<%):BJ+BO 74-7—/10/{:,6’[
/ k k

Blyz(y<%):BS'+Bo+:%f%:O:

on retrouve bien que B = Bi.(y)d. et By, (y) est paire 0,5 tout 35
ou rien

Q3-6. en utilisant 7 = +, imposé par la définition du sens de 4, 0,5précision
sens 7
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N N1EW D NiW D
a travers 1 spire : 1 = [ B, -ii,dS = pokDW, et Ly %901 — Ko 1H — Ko }{ 1,5 2
gl kay (1L <0
sans comm.)
Q3-7. E’;’l‘” =GAB; = —vo By, uniforme : 1
- - — 1 B=A
dés lors el% = @ E°" - Al = —vo By, - yg —voBlﬁy . [O }A =0 1 2
Q3-8. avec ey calculée dans le sens défini par 7y 0,5
précision
sens de e
calculé
d(N. = =
ey = _d(Naps) dzth)’ o = [[ By -1, dS = By .(t)S (B uniforme). 15
et finalement e, = —jwNy By Sv/2e7%! 0,5 2,5
Q3-9 circuit 1 maille avec io de sens e, : 0,5
définition
sens de is
= ' £2 ; EZCQWQ T (éq. circuit2) 1 1,5
Byt jlow— by R+ @=L oo (-0.5/
erreur
signe)
Q3-10. (éq. circuit2) devient i, = 2—2 et i, et e, sont en phase. 1 1
2
Q3-11. en phase donc Pj,q = igeffeaeff X 1 = L2;maz €2,max 1
V2 V2
2772 32 C2
. e w*NsB7S
12 maz = Qénaz et €2 max = WNaB1SV2 1 Pipg = # 1
2 2
AN : Pjq ~ 59 kW 1,5 (0 35
sans unité)
i ' . j 20kWh
Q3-12. en notant d la distance parcourue pour consommer toute I'énergie accumulée, n = 100K 1 (pour
m
D toute
la consommation sur 100km, et 7 = —, le temps de parcours sur la portion de route inductrice expression
Vo "
(en négligeant les durée d'entrée et de sortie du circuit 2 de cette zone, donc en considérant que c:}:téi;ilfe
toute la surface S du circuit 2 est entiérement dans cette zone pendant toute la durée ) otre
PinaD .
énergie accumulée Pygm = nd < d = —"47 exigeant
vn sur la
rédaction)
AN : Energie accumulée : 1930 kJ (On rappelle que : 1 Wh = 3600 J) 0.5
59,1.10°W x 1k
- 2~ 27km 1(-lsans | 2.5
110km h=1 x 20.103Wh(100km) unité)
Q3-13. bonus : améliorations possibles
Le mieux est d’augmenter si possible toutes les grandeurs qui figurent au carré dans |'expression de
la puissance. On peut imaginer augmenter le nombre de spires induites (sous la voiture), mais on
augmente le poids et la résistance du circuit. On peut aussi augmenter la fréquence, mais il faut
ensuite ajuster les impédances du circuit induit. On peut augmenter la valeur du champ
magnétique, mais il faut faire passer un courant important dans l'inducteur...
bonus 2
Total pour cette partie : 27 +
2
bonus
Total général : 63.5
points
+ 75
bonus




