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PHYSICS END-OF-SEMESTER TEST

The three exercises are independent. One double-sided handwritten A4 form and calculator are
allowed. Any unjustified result will not be taken into account. Make sure the copy is well

presented and legible.

A formula sheet is provided at the end of this document, useful for all three exercises.

1 Modeling a high-voltage line

In simplified terms, a high-voltage line can be seen as a system consisting of a cable (a cylinder)
and the earth (a plane), as shown in the figure 1 on the left. The permittivity at any point in the
system is fixed at ε0.

1.1 Study of the cable without earth

Initially, we will look at the cable alone (without the earth) modelled by a solid cylinder of infinite
length, radius a and carrying a uniform surface load σ > 0.

Question 1-1 : By defining a suitable coordinate system, determine the electric field E⃗ that it creates
throughout space.

Question 1-2 : Deduce the electric potential V at any point in space. It will be assumed to be equal
to V0 at r = a.

1.2 Modelling the high-voltage line

To study the high-voltage line, wewill use amodel consisting of two parallel cables, similar to the
previous one, one carrying a surface charge σ and the other −σ (Figure 1, right). It is assumed
that the distance 2h separating the two cables is very large compared with the radius a of the
cable. The Cartesian coordinate system is that shown in Figure 1.

FIGURE 1: High-voltage line above Earth (left) and associated electrostatic model (right)

Question 1-3 : Study the symmetries and invariances of this new system.

INSA Lyon, 2nd year February 2025 Duration : 3 h



2

We place ourselves in the plane such that x = 0, and with 0 ≤ y ≤ h.

Question 1-4 : From the result obtained in question 1.1, express the electric field produced by each cable
as a function of the variable y in the portion of plane considered.

Question 1-5 : Deduce the total electric field E⃗T of this system in the considered area.

In relation with electrostatic induction, the earth acquires a charge density σT due to the pre-
sence of the cable.

Question 1-6 : Calculate σT at any point with coordinates (0, 0, z) assuming that the earth is a
perfect conductor.

2 Asynchronous motor or induction motor

Anasynchronousmotor is anACmachine that converts electrical energy intomechanical energy.
It consists of amoving circuit, called the rotor, which rotates inside a fixed circuit, called the sta-
tor.
The model shown in Figure 2 consists of a moving closed rectangular loop or current loop
(the rotor, at the center of the figure), immersed in the magnetic fields B⃗1(t) = B0cos(ω0t) u⃗x
and B⃗2(t) = B0sin(ω0t)u⃗y produced respectively by the two stator coils (S1) and (S2). The
superposition of these two fields creates a rotating magnetic field B⃗, of constant norm, but
whose direction rotates in the (xOy) plane around the axis Oz and forms an angle ω0t with
the direction u⃗x at time t (see figure 2).
Throughout the problem, the rectangular loop, of normal n⃗ contained in the (xOy) plane, ro-
tates around the Oz axis in the same direction of rotation as B⃗(t), but at a constant angular
velocity ω different from ω0. B⃗(t) is uniform over the entire (small) surface S of the loop. The
rectangular loop has an electrical resistance R and a self-inductance L.

FIGURE 2: asynchronous machine
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2.1 Principle of the asynchronous machine

In the entire problem, we’re focusing on the steady state, i.e. when the angular velocity ω is
constant. In this harmonic regime, time-varying electrical quantities can be expressed as
complex quantities.

Question 2-1 : Express the flux Φ(t) of the magnetic field passing through the rectangular loop (or
rotor) as a function of B0, S, ω0 and ω.

Question 2-2 : Derive the expression of the induced electromotive force (e.m.f.) eind(t).

Question 2-3 : Put the expression eind(t), which is the complex expression of eind(t), into the form :
eind = emej(ωet−φe), and deduce the expressions of em, φe and ωe.

Question 2-4 : Write the electrical equation that applies to the rectangular loop. Write this equation
in the form : eind = Z iind(t), with Z = |Z|ejφ and deduce the expressions for Z , |Z| and φ as a
function of R,L, and ωe.

Question 2-5 : Deduce the real expression iind(t) of iind(t), as a function of em, |Z|, φ, ωe and φe.

Question 2-6 : Define the magnetic moment m⃗ of the rectangular loop through which a current i
flows. Indicate the relevant quantities on a diagram.

Question 2-7 : Explain qualitatively why the rectangular loop is driven into rotation when the coils
(S1) and (S2) are energized and produce the rotating magnetic field B⃗(t).

Question 2-8 : Express the instantaneous momentMz(t) of the magnetic forces acting on the loop
of Figure 2 with respect to the axis Oz as a function of em, S, B0, L, R and ωe.

Question 2-9 : Express the time average ⟨Mz⟩ of Mz(t) as a function of the same parameters as
for question 2-8.

2.2 Ayschronous motor operating conditions running with no load

In the following questions, you can use Figure 3, which shows the evolution of the normalized
mean moment (torque) applied to the rotor as a function of its angular velocity.

Question2-10 : Which range of angular velocitiesω of the rectangular loop corresponds to operation in motor mode
of the machine? What can be said about the starting torque ( ω = 0) ?

Question 2-11 : For ω = ω0, what is ⟨Mz⟩ ? Interpret this value.

Question 2-12 : (BONUS) What happens to the rotational speed of the rotor if the motor is under
load with a resisting moment ⟨Mzres.⟩ = −0.2 ⟨Mzmax

⟩ ? Why is it called an asynchronousmotor?
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FIGURE 3: Evolution of average moment (torque) as a function of rotor angular velocity

3 Charging cars on inductive roads
3.1 Creation of the magnetic field of the inductor

Let’s consider an electric car, equipped with an induction charging system 1 : the car drives over
a coil buried in the asphalt to recover its autonomy (see figure 4).
All numerical values are gathered at the end of the exercise.
The inductor coil buried in the road consists ofN1 turns through which a current i1 flows, each
describing a rectangle of lengthD and widthW . The stack ofN1 turns spreads over a heightH
(see figure 4).
First, we’ll simplify the coil in order to evaluate the magnetic field it produces. To do this, we
choose to neglect the width W of the coil (and therefore the inductive effect of portions of
the coil perpendicular to the road) and to reduce it to two planes parallel to the (xOz) plane,
assumed infinite in directions parallel to u⃗x and u⃗z , and intersecting the (Oy) axis at y = W

2

and y = −W
2 (see figure 5). Surface currents flow through these planes such that :

k⃗ = +k u⃗x for y = −W

2
(1)

k⃗′ = −k u⃗x for y = +
W

2
(2)

with k > 0. In the whole space, permeability is µ0.

1. This system is still at the experimental stage. See https ://www.incit-ev.eu/ for more information
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FIGURE 4: Coil structure buried in the road. Parts of the coil along the W width will be ignored

.

FIGURE 5: Coil model : two parallel planes with a surface current density

.

Question 3-1 : Determine the relationship between N1, i1,H and k.

Question 3-2 : From the symmetries and invariances of this global distribution of surface current
consisting of the two infinite planes, determine the topology of the magnetic field B⃗1 they create.

Question 3-3 : Using symmetry considerations, give a relationship between the magnetic field com-
ponents of B⃗1(y = y0) and B⃗1(y = −y0), y0 ∈ R∗.

We now consider only one of the planes, specifically the one passing through y = −W
2 .

Question 3-4 : By a rigorous and complete study, determine the magnetic field B⃗0 created by this
single plane in all space.

Question 3-5 : Deduce the expression of the magnetic field B⃗1 created in the whole space by the
two planes. Check that the result agrees with that of questions 3.2 and 3.3.
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Question 3-6 : Assuming that the magnetic field of the real (non-infinite) coil is the same as that
studied previously, deduce the self-inductance L1 of the inducting coil as a function ofH ,W ,D, N1

and µ0.

The magnetic field of the coil studied previously is picked up by a flat square coil, of vertical
normal, placed under the car. It forms the induction receiver of this system and will be referred
to as “circuit 2”. This induced coil, with surface area S, comprising N2 turns, self-inductance L2,
and resistance R2, is connected to an accumulator, modelled by a capacitor of capacitance C2.
The current i1 flowing in the inductor coil is now sinusoidal, of angular frequency ω, so that the
magnetic field captured by the induced coil is of the form :

B⃗1 = B1

√
2 cos(ωt) u⃗z

This magnetic field will be assumed to be uniform throughout circuit 2.
The car travels at a constant speed v⃗ = v0 u⃗x. In the following, we’ll assume that all of circuit 2
is immersed in the magnetic field of the inductor.

Question 3-7 : Justify that motion induction doesn’t play any role in this situation.

Question 3-8 : Determine the expression of the electromotive force (e.m.f.) e2(t) induced by the
inductor on circuit 2 when the entire surface S of the induced coil is above the inductor coil. Express
this voltage in complex notation : e2(t).

Question 3-9 : Draw an electrical diagram of the induced circuit including the accumulator. Give
the complex literal expression of the induced current i2.

In the rest of the exercise, we set the conditions such that L2C2ω
2 = 1.

Question 3-10 : What effect does this assumption have on the relationship between the current i2
flowing in the induced circuit and the voltage e2 ?

Question 3-11 : The generic expression for the active power Pa developed by a section of circuit
through which a current i flows and across which a voltage u is measured, is :

Pa = UeffIeff cosφ

where Ueff and Ieff are the RMS amplitudes of voltage u and current i, and φ the phase shift between
these two quantities.
Give the numerical value of P2, the active power supplied by the induction phenomenon in circuit 2.

Question 3-12 :
Assuming that all the electrical energy accumulated when crossing the recharging zone is recovered
and stored in the battery, numerically evaluate this quantity of energy, and the number of additional
kilometers of range gained by the car.

Question 3-13 : Suggest improvements to this system (bonus).

Numerical data for this exercise :

— Car velocity v0 : 110km/h

— Dimensions of the inductor coil :D = 1000m,H = 10 cm,W = 1m

— RMS value of the magnetic field picked up by the receiving coil : 0.24mT.
— Number of turns of the inductor coil : N1 = 1000
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— Number of turns of the induced coil : N2 = 60

— Surface area of the induced coil : S = 0.1m2.
— Frequency of the current in the inductor : 85kHz.
— Resistance of the induced circuit : R2 = 10Ω

— As reminder : µ0 = 4π10−7Hm−1

— Energy consumption of an electric car : 20 kWh for 100 km
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Formula sheet (Note : not all formulas are useful)

Divergence in cylindrical coordinates :

div E⃗ = ∇⃗ · E⃗ =
1

r

∂

∂r
(r Er) +

1

r

∂Eθ

∂θ
+

∂Ez

∂z

Divergence in spherical coordinates :

div E⃗ = ∇⃗ · E⃗ =
1

r2
∂

∂r
(r2 Er) +

1

r sin θ

∂

∂θ
(sin θ Eθ) +

1

r sin θ

∂Eϕ

∂ϕ

Rotational in cylindrical coordinates :

r⃗ot E⃗ = ∇⃗ ∧ E⃗ =

(
1

r

∂Ez

∂θ
− ∂Eθ

∂z

)
u⃗r +

(
∂Er

∂z
− ∂Ez

∂r

)
u⃗θ +

(
1

r

∂

∂r
(r Eθ)−

1

r

∂Er

∂θ

)
u⃗z

Rotational in spherical coordinates :

−→
rotE⃗ = ∇⃗ ∧ E⃗ =

{
1

rsinθ

[
∂

∂θ
(Eφ sin θ)− ∂Eθ

∂φ

]}
u⃗r

+

{
1

r

[
1

sin θ

∂Er

∂φ
− ∂

∂r
(rEφ)

]}
u⃗θ

+

{
1

r

[
∂

∂r
(rEθ)−

∂Er

∂θ

]}
u⃗φ

Trigonometric formulas :

cos a. cos b = 1
2 [cos(a− b) + cos(a+ b)]

sin a. sin b = 1
2 [cos(a− b)− cos(a+ b)]

cos a. sin b = 1
2 [sin(a+ b)− sin(a− b)]
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Note pour tout le sujet : pas de points si résultat sans unité.

Champ électrique créé par deux fils infinis chargés Points Total/
ques-
tion

Q1-1. On se place dans un repère cylindrique d’axe z correspondant à l’axe du cylindre 0,5
Tout plan (M, u⃗r, u⃗z) est plan de symétrie de la distribution de charges, donc de E⃗ et le champ
E⃗(M) est contenu dans ce plan, donc E⃗ · u⃗θ = Eθ = 0
Tout plan (M, u⃗r, u⃗θ) est plan de symétrie de la distribution de charges (fils infinis), et Ez = 0

Finalement E⃗ = Er(r, θ, z) u⃗r

1.5 (-1
par

erreur)

Invariances en θ et z, ce qui aboutit à : E⃗ = Er(r) u⃗r 1 3
On utilise l’équation de Maxwell-Gauss : divE⃗ = ρ

ε0
Ici, ρ = 0 car on n’a que des charges surfaciques 1

Avec la divergence en coordonnées cylindriques, il vient :
1

r

∂

∂r
(r Er) = 0 ⇒ rEr(r > a) = A et

rEr(r < a) = A0 avec A et A0 des constantes

1,5

Avec r = 0 ou E⃗(O) = 0⃗ (car xOy, yOz et xOz sont plans de symétrie des charges, donc de E⃗,
d’où Ez(O) = 0 = Ex(O) = Ey(O) respectivement) : A0 = 0

1

relation de passage en r = a : ∆(εE⃗∥) = σu⃗r ⇒ ε0Er(a
+)− 0 = ε0

A

a
= σ :

E⃗(r > a) =
aσ

ε0r
u⃗r 1,5 5

Q1-2. A partir de E⃗ = −∇⃗ = −∂V
∂r 1

On détermine V par intégration. Condition aux limites : V (r ⩽ a) = V0. On trouve
V (r ⩾ a) = V0 −

aσ

ε0
ln
( r
a

)
par continuité en r = a

1 2

Q1-3. invariance sur z uniquement (fils infinis) : 0.5. (xOz) plan d’antisymétrie des charges : 0.5.
(yOz) plan de symétrie des charges : 0.5. ∀M, (xMy) plan de symétrie des charges et de E⃗ : 0.5

2

Bonus : E⃗ = Ey u⃗y dans le plan x = 0 Bonus : 2 2 (+2
Bo-
nus)

Q1-4. avec E⃗1 créé par σ1 = +σ et E⃗2 créé par σ2 = −σ :

E⃗1(r1 = h− y) =
aσ

ε0(h− y)
(−u⃗y) et E⃗2(r2 = h+ y) =

a(−σ)

ε0(h+ y)
(+u⃗y) 2× 1 2

Q1-5. Th. de superposition : E⃗(0, y, z) = E⃗1(r1) + E⃗2(r2) 0,5

Il vient E⃗(0, y, z) =
aσ

ε0

2h

h2 − y2
(−u⃗y) 0,5 1

Q1-6. Th. de Coulomb ou bien Relations de passage en M0 à la surface du conducteur :
E⃗(M−

0 ) = 0⃗ puisque dans conducteur à l’équilibre électrostatique. 1

∆(E⃗∥) = 0⃗ ⇒ E⃗∥(M
+
0 ) = 0⃗

∆(εE⃗⊥) = σT n⃗ ⇒ E⃗(M+
0 ) = E∥(M

+
0 ) + E⃗⊥(M

+
0 ) = E⃗⊥(M

+
0 ) =

σT

ε0
n⃗ 2

(0, 0, z) est à la surface de la Terre considérée comme un conducteur, de normale n⃗ = u⃗y
σT

ε0
u⃗y = E⃗(0, 0, z) = −2σ

ε0

a

h
u⃗y ⇒ σT = −2aσ

h
1 4

Total pour cette partie : 19 +
2

bonus

Moteur asynchrone Points Total/
ques-
tion

1
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Q2-1. Φ(t) =
˜

spire
B⃗ ·

−→
dS, comme le champ est considéré comme uniforme sur la spire cela

donne B0S cos((̂B⃗, n⃗)) ⇒ Φ(t) = B0S cos((ω0 − ω)t)

2

bonus : ici on n’utilise B⃗ = B⃗app car epind est pris en compte avec la donnée de L de la spire bonus 1 2

Q2-2. eind = −dΦ(t)

dt
= (ω0 − ω)B0S sin((ω0 − ω)t). 1 1

Q2-3. em = (ω0 − ω)B0S, φe =
π
2 et ωe = ω0 − ω 0,5+1+0,5 2

Q2-4. eind(t) = Ri(t) + L
di(t)

dt
En régime harmonique : eind(t) = (R+ jLωe)iind(t) 1

d’où Z = R+ jLωe, |Z| =
√
R2 + (Lωe)2 et tanφ =

Lωe

R
1 2

Q2-5. iind =
eind
Z

=
em
|Z|

e
j(ωet−

π

2
−φ)

⇒ iind(t) = Re (iind(t)) =
em
|Z|

cos(ωet−
π

2
− φ)

⇒ iind(t) =
em
|Z|

sin(ωet− φ) 1,5

remarque : le calcul se fait aussi à partir des représentations algébriques des complexes :
iind =

eind
Z

=
em

R2 + L2ω2
e

(R− jLωe) (−j) ej(ωet)

d’où iind = Re(iind) =
em

R2 + L2ω2
e

(R sin(ωet)− Lωe cos(ωet)) 1,5

Q2-6. m⃗ = iSn⃗. Le schéma doit montrer le sens positif choisi pour le courant et la normale
orientée qui en résulte.

1 (-0,5
par oubli)

1

Q2-7. La variation de flux magnétique à travers la spire, due à la rotation du champ magnétique
engendre une f.é.m. induite (induction statique), elle même à l’origine d’un courant induit. La spire
parcourue par un courant et plongée dans le champ magnétique uniforme est soumise à des
forces de Laplace dont l’action la met en mouvement de rotation. Elle est soumise au
couple de moment résultant M⃗ (t) = m⃗(t) ∧ B⃗(t).

2 (-0,5
par oubli)

On peut aussi invoquer la règle du flux maximum et dire que la boucle de courant abandonnée aux
forces de Laplace évolue de manière à maximiser le flux. Elle cherche donc à aligner sa normale
avec la direction du champ magnétique. Donc elle tourne et cherche à la rattraper.

2

Q2-8. M⃗ (t) = iindSn⃗ ∧ B⃗ = iindSB0 sin(ωet)u⃗z

⇒ Mz(t) =
emSB0

|Z|
sin(ωet− φ) sin(ωet) (ou encore =

emSB0

2|Z|
[cosφ − cos(2ωet− φ)]) 2

(Remarque : Comme cosφ =
R

|Z|
et sinφ =

Lωe

|Z|
, après développement on obtient par ex.

Mz =
emSB0

R2 + L2ω2
e

[R sin(ωet)− Lωe cos(ωet)] sin(ωet) mais l’expression de la ligne précédente

suffit)

(ou toute
expression
équiva-
lente)

bonus : ici on ne prend pas en compte B⃗p dans M⃗ car contribue uniquement au torseurs des
forces intérieures, or M⃗int = 0⃗

bonus 0,5 2

Q2-9. ⟨cos(2ωet− φ)⟩ = 0, ou bien
´ Te

0
cos(ωet) sin(ωet) dt = 0 et

1

Te

´ Te

0
sin2(ωet) dt =

1

2
,

donc ⟨Mz⟩ =
emSB0

2|Z|
cosφ =

ωe(SB0)
2

2

cosφ

|Z|
=

Rωe(SB0)
2

2(R2 + L2ω2
e)

1,5 1,5

Q2-10. Le couple est moteur pour ⟨Mz⟩ ⩾ 0 ⇔ 0 ⩽ ω ⩽ ω0, 1
le rotor est toujours un peu en retard sur le champ magnétique. bonus 0,5
Au démarrage, le couple est bien moteur et le moteur peut démarrer, sauf si un couple résistant
trop important est présent quelque part (supérieur à 0.6 Mmax)

0,5
bonus 0,5

1,5

Q2-11. Le couple est nul : frontière entre le fonctionnement moteur et génératrice (non exigible :
le rotor est accroché sur le champ magnétique.)

1 1

2
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Q2-12. BONUS : Si on a un couple résistant ⟨Mzrés.⟩ = −0.2 ⟨Mzmax⟩, le rotor se stabilisera à

une vitesse telle que le couple total est nul, soit ⟨Mz⟩+ ⟨Mzrés.⟩ = 0 ⇒ ⟨Mz⟩
⟨Mzmax⟩

= 0.2. On voit

sur la figure que le point de fonctionnement va remonter sur la partie verticale de la courbe
jusqu’à une valeur du moment moyen normalisé de 0.2 et que par conséquent la vitesse angulaire
ω va prendre une valeur légèrement inférieure à ω0. Le rotor tourne donc légèrement moins vite
que le champ magnétique, d’où le nom de moteur asynchrone.
Surbonus : On remarque qu’en raison de la vitesse relative du rotor (l’induit) par rapport au
champ magnétique, on est en présence d’un phénomène d’induction mutuelle.

bonus 1

Total de cette partie : 17.5
+

bonus
3.5

Exercice 3 : Recharge des voitures électrique sur des portions de route inductrices (27,5/63 +
bonus 1)

Points Total/
ques-
tion

Q3-1. N1i1 =
˜

j⃗ · u⃗x dS =
´H
0

k⃗ · u⃗xdz ⇔ N1i1 = kH 1 1

Q3-2. dans le modèle nappes de courant parallèles à (xOz) infinies :
invariances par toutes translations colinéaires à u⃗x et u⃗z : B⃗1(y) 0,5
(xMy) plan de symétrie des densités de courants k⃗ et k⃗′, donc d’antisymétrie de B⃗1 et
B⃗1(M) = B1z(y)u⃗z

1 (être
exigeant)

1,5

Q3-3. (xOz) plan d’antisymétrie des densités de courants, donc de symétrie de B⃗1 et
B1z(−y) = B1z(y) (les composantes ∥ de B⃗1 sont des fonctions paires)

1 1

Q3-4. On a toujours B⃗0(y) par invariances, (xMy) plan d’antisymétrie de B⃗0 et
B⃗0(M) = B0z(y)u⃗z :

0,5

dès lors
−→
rot

(
B⃗

µ

)
=

1

µ0

∂B0z

∂y
u⃗x =

1

µ0

dB0z

dy
u⃗x

MA
= 0⃗ (pas de courant volumique), 1,5

d’où B0z

(
y > −W

2

)
= cste1 = B+

0 et B0z

(
y < −W

2

)
= cste2 = B−

0 0,5

par ailleurs y = −W

2
plan de symétrie de k⃗, donc d’antisymétrie de B⃗0, d’où B−

0 = −B+
0 (éq1-B0) 1

Relation de passage sur ∆B⃗∥ en y = −W

2
conduit à 0,5

expression
générale
correcte

B0z(y = −W+

2 )

µ0
u⃗z −

B0z(y = −W−

2 )

µ0
u⃗z = ku⃗x ∧ u⃗y = ku⃗z ⇔ B+

0 −B−
0

éq1−B0
= 2B+

0 = µ0k 1 5

Q3-5. B⃗′
0 créé par k⃗′ se déduit de B⃗0 en remplaçant k par k′x = −k :

B′
0z

(
y > W

2

)
= B

′+
0 = +

µ0k
′
x

2
= −µ0k

2
= −B′

0z(
(
y < W

2

)
1

on utilise le Th. de superposition en distinguant les zones de l’espace y < −W

2
, −W

2
< y <

W

2
et

W

2
< y, on trouve :

0,5

B1,z

(
y < −W

2

)
= B−

0 +B
′−
0 = −µ0k

2
+

µ0k

2
= 0,

B1,z

(
−W

2 < y < W
2

)
= B+

0 +B
′−
0 =

µ0k

2
+

µ0k

2
= µ0k, et

B1,z

(
y < W

2

)
= B+

0 +B
′+
0 =

µ0k

2
− µ0k

2
= 0 :

1,5

on retrouve bien que B⃗1 = B1z(y)u⃗z et B1z(y) est paire 0,5 tout
ou rien

3,5

Q3-6. en utilisant n⃗ = +u⃗z imposé par la définition du sens de i1 0,5précision
sens n⃗

3
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à travers 1 spire : φ1 =
˜

B⃗1 · u⃗z dS = µ0kDW , et L1 =
N1φ1

i1
=

µ0N1kWD

k H
N1

=
µ0N

2
1WD

H
1,5

(-1 L1 < 0
sans comm.)

2

Q3-7. E⃗mot
m = v⃗ ∧ B⃗1 = −v0B1u⃗y uniforme : 1

dès lors emot
ind =

˛
E⃗mot

m · dℓ⃗ = −v0B1u⃗y ·
˛

d
−−→
OM = −v0B1u⃗y ·

[−−→
OM

]B=A

A
= 0 1 2

Q3-8. avec e2 calculée dans le sens défini par n⃗2 = +u⃗z : 0,5
précision

sens de e2
calculé

e2 = −d(N2φ2)

dt
, φ2 =

˜
B⃗1 · u⃗z dS = B1,z(t)S (B⃗1 uniforme). 1,5

et finalement e2 = −jωN2B1S
√
2 ejωt 0,5 2,5

Q3-9 circuit 1 maille avec i2 de sens e2 : 0,5
définition
sens de i2

i2 =
e2

R2 + jL2ω − j
C2ω

=
e2

R2 + j L2C2ω2−1
C2ω

(éq. circuit2) 1
(-0,5/
erreur
signe)

1,5

Q3-10. (éq. circuit2) devient i2 =
e2
R2

et i2 et e2 sont en phase. 1 1

Q3-11. en phase donc Pind = i2,effe2,eff × 1 =
i2,max√

2

e2,max√
2

. 1

i2,max =
e2,max

R2
et e2,max = ωN2B1S

√
2 : Pind =

ω2N2
2B

2
1S

2

R2
. 1

AN : Pind ≃ 59 kW 1,5 (0
sans unité)

3,5

Q3-12. en notant d la distance parcourue pour consommer toute l’énergie accumulée, η =
20kWh

100km

la consommation sur 100km, et τ =
D

v0
, le temps de parcours sur la portion de route inductrice

(en négligeant les durée d’entrée et de sortie du circuit 2 de cette zone, donc en considérant que
toute la surface S du circuit 2 est entièrement dans cette zone pendant toute la durée τ)

énergie accumulée Pindτ = ηd ⇔ d =
PindD

vη
.

1 (pour
toute

expression
littérale

cohérente,
être

exigeant
sur la

rédaction)
AN : Energie accumulée : 1930 kJ (On rappelle que : 1Wh = 3600 J) 0.5

d =
59, 1.103W × 1km

110kmh−1 × 20.103Wh(100km)
−1 ≃ 2.7 km 1 (-1 sans

unité)
2.5

Q3-13. bonus : améliorations possibles
Le mieux est d’augmenter si possible toutes les grandeurs qui figurent au carré dans l’expression de
la puissance. On peut imaginer augmenter le nombre de spires induites (sous la voiture), mais on
augmente le poids et la résistance du circuit. On peut aussi augmenter la fréquence, mais il faut
ensuite ajuster les impédances du circuit induit. On peut augmenter la valeur du champ
magnétique, mais il faut faire passer un courant important dans l’inducteur...

bonus 2
Total pour cette partie : 27 +

2
bonus

Total général : 63.5
points
+ 7.5
bonus

4


