

Exercise 1 : Direct Current Circuit (6/20 + bonus 0.5)	/6
Q1. After 4 transformations (switching to Norton for $(E, 2R)$, combining 2 resistors in parallel, switching back to Thevenin on the left, switching to Thevenin for the real current source : 4 transformations with 0.5 pt each), we arrive at the following single-loop circuit :	(Same total points for any other correct method) 2
Applying Kirchhoff's Voltage Law (KVL) to this loop, we get : $E/2 - RI - RI - 3RI - 3RI_N = 0$, which gives $I = \frac{E/2 - 3RI_N}{5R}$	0.5
and $U_{AB} = 3RI_N + 3RI = 3RI_N + \frac{3}{5}(E/2 - 3RI_N) = \frac{3}{5}(E/2 + 2RI_N)$	0.5
We verify that these two expressions are homogeneous (Bonus 0.5 total for the two verifications).	Bonus 0.5
Q2. A dipole \mathcal{D} operates as a receiver if the electrical power received by the dipole is positive, i.e., $U_{\mathcal{D}}I_{\mathcal{D}} > 0$ in Passive Sign convention (or alternatively, a dipole operates as a receiver if the power supplied by the dipole to the current is negative, i.e., $U_{\mathcal{D}}I_{\mathcal{D}} < 0$ in Active Sign convention). Here, for the dipole "real current source," we look for the conditions that satisfy $U_{AB}I > 0$ (we are in load convention), i.e., $\frac{3}{5}(E/2 + 2RI_N) \frac{E/2 - 3RI_N}{5R} > 0$. With $E, I_N > 0$, it suffices that $E/2 - 3RI_N > 0 \Leftrightarrow E > 6RI_N$. (Non-mandatory remark : since the only active component in \mathcal{D} is the ideal current source (ICS), one could have limited the analysis to the Operating Zone of the ICS.)	1.0

Exercise 2 : Capacitor Discharge (7/20 + bonus 2)		/7
Analyze :		
The capacitor (initially charged to a voltage U_0) discharges through a person modeled as a resistor R . Figure 2 shows the effects of the current as a function of contact time. The task is to determine the current evolution over time in this transient regime.	0.5	
Modeling the experiment : Complete the discharge circuit diagram with all relevant variables ($U(t)$, C , R , and $i(t)$).	0.5	
Realize :		
Initial condition (IC) : continuity of the voltage across the capacitor terminals (following charging; a demonstration is optional and can be done by modeling C as an open switch in steady state) : $U(t = 0^+ \text{ s}) = U(t = 0^- \text{ s}) = U_0$.	0.5 (+0.5 bonus for demonstration)	
Study of discharge : Treat C using the generator convention, leading to $i(t) \stackrel{(1)}{=} -C \frac{dU}{dt}$; treat R using the load convention, giving $U \stackrel{(2)}{=} Ri(t)$.	0.75 + 0.25	
Substituting (2) into (1) : $i(t) + RC \frac{di}{dt} = 0$ (differential equation, DE). (Accept points if the DE is expressed for $u(t)$: $u(t) + RC \frac{du}{dt} = 0$.)	0.5	
(DE) is a first-order homogeneous differential equation. A solution of the form $i = i_0 e^{rt}$ is tested in the DE, yielding $r + \frac{1}{RC} = 0$.	0.5	
Additionally, at $t = 0^+ \text{ s}$, $U(0^+ \text{ s}) = U_0 = Ri(t = 0^+ \text{ s})$, so $i(t = 0^+ \text{ s}) = \frac{U_0}{R} = i_0 e^0$. Thus, $i = \frac{U_0}{R} e^{-\frac{t}{\tau}}$ with $\tau = RC$. (Accept points for $u(t) = U_0 e^{-\frac{t}{\tau}}$ and $i(t) = -C \frac{dU}{dt} = \frac{U_0}{R} e^{-\frac{t}{\tau}}$.)	0.5	
Bonus : Verify homogeneity and long-term behavior (tends to zero as $t \rightarrow \infty$). For a sign error resulting in an exponentially increasing solution at long times, grant full points for REA if the student identifies and corrects the error (3 points). If not, give 1/3 of the points if everything else is correct.	Bonus 0.5	
Validate :		
The current is not constant, so to answer the question (nature of the perceived electrification), one must estimate a "time of electrification" and an "average current." Accept various interpretations, even slightly approximate ones, as long as they make sense. For example :		
AN : $i_0 = \frac{100V}{1k\Omega} = 0.1A = 100mA$ and $\tau = 1k\Omega \times 500\mu\text{F} = 0.5\text{s}$.	0.5	
Since $i(t)$ is decreasing, it is certain that we are not in the fibrillation zone. However, we are likely in the tetanization zone.	1	
Bonus : Additionally, calculate $i(t = \tau) = 100mA e^{-1} \simeq 37mA$. This shows that for at least 0.5s, the current exceeds 37mA, confirming we are in the tetanization zone.	Bonus 0.5	
Communicate : Clear reasoning and logical flow are evident in the student's work.	0.5	
Discussion of the statement :		
To compare to the given statement, begin by evaluating the electrical energy received : all energy stored in the capacitor is discharged through R , which therefore receives the energy $W_{elec} = \frac{1}{2} C U_0^2 \stackrel{AN}{=} 2.5\text{J}$. This is less than the 5J stated in the text.	1	
One could argue that in the previous question, the electrification experienced was significant since it caused tetanization. The claim that an electrification below 5J has no effect on a person seems incorrect unless fibrillation is specifically required.	Bonus 0.5	

Exercise 3 : Mass-spring system on an inclined plane	/8
<p>Q1. In the Terrestrial reference frame, considered as Galilean, we study the system {block} : The external forces are :</p> <ul style="list-style-type: none"> The weight $\vec{F}_G = m\vec{g} = -mg \sin \alpha \vec{e}_x - mg \cos \alpha \vec{e}_y$ The force due to the spring : $\vec{F}_k = +k(\ell - \ell_0)\vec{e}_x$ The reaction force $\vec{R} = \vec{R}_N \vec{e}_y$ with $R_N > 0$ (no friction). <p>At equilibrium, we have $\vec{F}_G + \vec{F}_k + \vec{R} = \vec{0}$</p> <p>By projection on \vec{e}_x, we get</p> $-mg \sin \alpha + k(\ell - \ell_0) = 0 \Leftrightarrow k = \frac{mg \sin \alpha}{\ell - \ell_0}$ <p>Numerical application : min/max method or differential method : $k = (1.24 \pm 0.10) \text{ N.m}^{-1}$ or $k = (1.2 \pm 0.1) \text{ N.m}^{-1}$ <i>For the differential method note that $\frac{\Delta(\sin \alpha)}{\sin \alpha} = \frac{\Delta \alpha}{\tan \alpha}$</i></p>	0.5
<p>Q2. If the block is moved to the right, the extension $\ell - \ell_0$ <u>decreases</u>, the spring force thus <u>decreases</u>. The other forces do not change, so that the resulting force along \vec{e}_x is oriented towards the left (negative). The system goes back to its equilibrium position. If the block is moved to the left, the spring force increases and the resulting force is positive along \vec{e}_x, bringing the block back to its equilibrium position. The equilibrium position is therefore stable</p>	1
<p>Q3. Noting \vec{R}_T and \vec{R}_N the tangential and normal components of the reaction force, we have</p> $\ \vec{R}_T\ \leq f \ \vec{R}_N\ $	0.5
<p>Q4. The system is subjected to the same external force, but now the reaction force is $\vec{R} = \vec{R}_T + \vec{R}_N$, where $\vec{R}_N = R_N \vec{e}_y$ and $\vec{R}_T = R_T \vec{e}_x$. At equilibrium, we have now</p> $\begin{cases} -mg \sin \alpha + k(\ell - \ell_0) + R_T = 0 \\ -mg \cos \alpha + R_N = 0 \end{cases}$ <p>This gives $R_N = mg \cos \alpha$ and $k = (mg \sin \alpha - R_T)/(\ell - \ell_0)$ The extreme values k can take are obtained for the extreme values of R_T, so that</p> $k_{\min} = \frac{mg}{\ell - \ell_0} (\sin \alpha - f \cos \alpha), \quad k_{\max} = \frac{mg}{\ell - \ell_0} (\sin \alpha + f \cos \alpha)$ <p>Numerical application : $k_{\min} = 0.90 \text{ N.m}^{-1}$ and $k_{\max} = 1.58 \text{ N.m}^{-1}$ The range is quite large!</p>	0.25
<p>Q5. Friction is negligible if the term $f \cos \alpha$ is small compared to $\sin \alpha$. This is the case if $f \ll \tan \alpha = 0.364$. Friction can thus be neglected in the case of steel on ice, but not in the other cases (small but not very small for steel/Teflon)</p>	0.5