SCAN 2 - Test # 3 - Correction - Feb. 4th, 2025
Exercise 1

All questions in this exercise are independent.

1. Determine the nature of the following two series and integral :
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Exercise 2

Consider a sequence (uy)nen defined by ug €10, 1[ and the following iterative relation :
2y,
Un+1 = =
Uy + 2

In this exercise, we will determine the nature of the series z Uy, -
n
1., (a) Prove that u, €]0,1[ for all n € N.
(b) Show that the sequence (uy)nen is decreasing.

2. Deduce that the sequence (u,)n,en converges to a limit £, and determine that limit.

3. Simplify the sum Zlu(

n=0

) then deduce that the series Zln(
nz=0

) diverges.
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4. Show that ln(;) ~ % then deduce the nature of Z Up,.
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Exercise 3

1 0 4
For any real number a, consider M, as the matrix in M3(R) defined by M, = ( a 2 0 ) .
2 0 3

Part I :

0
1. Show that u = < 1 is an eigenvector of M,, specifying the associated eigenvalue.
0

2. Show that for any value of a € R, the matrix M, is diagonalisable.
3. Are there values of a for which the matrix M, is invertible ?

4. We now seek functions z, y, and z of class C! on R that satisfy the following system :

' (t) = x(t) + 4z(t)
(S) /()Z”()+21/()
2/(t) = 2x(t) + 32(t)
x(t)
and the initial conditions x(0) = 3, y(0) = 1, and 2(0) = 0. We define X (t) = ( y(t) ) for all
2(t)

t € R. Notice that system (S) can be rewritten as X'(t) = M, X(t).

(a) Find a diagonal matrix D; and an invertible matrix P such that M, = PD,P 1 1t is not
necessary to determine P!

a(t)
() Let Y(t) = P7'X(t) with Y(t) = ( B(t) ) Show that X'(t) = M,X(t) if and only if
(t)

Y'(t) = DY (t).
(€) Solve the system Y'(t) = D1Y (t).

(d) Determine X (t) using the initial conditions.
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Part II : We consider two real sequences (un)nen and (vy,)nen satisfying the following system :
Un+1 = Up + dvy,
Unt1 = 2Up + 3y

Up

)
l‘”

with ug, vg € R. Moreover, we define U,, = ( ) for all n € N.
1. Determine the matrix N such that U,+1 = NU,, for all n € N.
2. Express U, in terms of Uy, N, and n.

3. (a) Determine a diagonal matrix Dy and an invertible matrix @ such that N = QD>Q7 Y, then
compute Q1.

(b) Show that N" = QD5Q~" for all n € N.
(¢) Deduce u, and v, as functions of n, ug, and vy.

Unp,
4. We now define V,, = Wy, for all n € N. Using the previous questions, determine the expres-
Un
sions of the general terms of the sequences (u,)nen, (Wn)nen, and (v, )pen satisfying the relation
Vpe1 = MyV,, in terms of n, ug, vg, and wy.
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Exercice 4

1
We recall that 1 +2+...4+n = ”(”‘+ )
Let n € N*. For all z € R, we define

1+ 1 1

2 2+x 2

A(z) = . .
n n n—+x

1., Compute det(A(z)).

2., We aim to retrieve the result from the previous question by directly evaluating the eigenvalues of
A(z).
(a), Determine the rank of A(0).

(b) Deduce that for all z € R, A(z) has an eigenvalue with multiplicity at least n — 1, which
depends on x and will be specified.

1
(¢) Show that A =z + ”(”; ) is an eigenvalue of A(x).

(d)) Deduce from (b) and (c¢) the value of det(A(x)).
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