

INSA LYON
FIMI - SCAN 2

MATH TEST # 3 ON FEBRUARY 4TH, 2025 - DURATION 2H

Warnings and Advice

- All documents, dictionnaires, calculators or electronic devices, and communication means are prohibited.
- The marking scheme is provided for reference only.
- Presentation, quality of writing, clarity, and precision of reasoning are taken into account in the grading.
- Indicative grading scale : 4, 3.5, 8.5, 4

Exercise 1

All questions in this exercise are independent.

1. Determine the nature of the following two series and integral :

$$(a) \sum_{n \geq 1} \ln \left(1 + \frac{1}{n^4 + 2n} \right) \quad (b) \sum_{n \geq 0} \frac{\sqrt{n} e^{n^2}}{n!} \quad (c) \int_1^{+\infty} \frac{e^{-x} (x^3 + 2)}{\sqrt{x}} dx$$

2. Consider the following integral :

$$\mathcal{I} = \int_1^{+\infty} \frac{1}{x \sqrt{1+x^2}} dx.$$

Using the substitution $t = \sqrt{1+x^2}$, compute \mathcal{I} .

Exercise 2

Consider a sequence $(u_n)_{n \in \mathbb{N}}$ defined by $u_0 \in]0, 1[$ and the following iterative relation :

$$u_{n+1} = \frac{2u_n}{u_n + 2}.$$

In this exercise, we will determine the nature of the series $\sum_n u_n$.

1. (a) Prove that $u_n \in]0, 1[$ for all $n \in \mathbb{N}$.
(b) Show that the sequence $(u_n)_{n \in \mathbb{N}}$ is decreasing.
2. Deduce that the sequence $(u_n)_{n \in \mathbb{N}}$ converges to a limit ℓ , and determine that limit.
3. Simplify the sum $\sum_{n=0}^N \ln \left(\frac{u_n}{u_{n+1}} \right)$ then deduce that the series $\sum_{n \geq 0} \ln \left(\frac{u_n}{u_{n+1}} \right)$ diverges.
4. Show that $\ln \left(\frac{u_n}{u_{n+1}} \right) \underset{n \rightarrow +\infty}{\sim} \frac{u_n}{2}$ then deduce the nature of $\sum_n u_n$.

Exercise 3

For any real number a , consider M_a as the matrix in $\mathcal{M}_3(\mathbb{R})$ defined by $M_a = \begin{pmatrix} 1 & 0 & 4 \\ a & 2 & 0 \\ 2 & 0 & 3 \end{pmatrix}$.

Part I :

1. Show that $u = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ is an eigenvector of M_a , specifying the associated eigenvalue.

2. Show that for any value of $a \in \mathbb{R}$, the matrix M_a is diagonalisable.

3. Are there values of a for which the matrix M_a is invertible?

4. We now seek functions x , y , and z of class \mathcal{C}^1 on \mathbb{R} that satisfy the following system :

$$(\mathcal{S}) \quad \begin{cases} x'(t) = x(t) + 4z(t) \\ y'(t) = ax(t) + 2y(t) \\ z'(t) = 2x(t) + 3z(t) \end{cases}$$

and the initial conditions $x(0) = 3$, $y(0) = 1$, and $z(0) = 0$. We define $X(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$ for all $t \in \mathbb{R}$. Notice that system (\mathcal{S}) can be rewritten as $X'(t) = M_a X(t)$.

(a) Find a diagonal matrix D_1 and an invertible matrix P such that $M_a = PD_1P^{-1}$. It is not necessary to determine P^{-1} .

(b) Let $Y(t) = P^{-1}X(t)$ with $Y(t) = \begin{pmatrix} \alpha(t) \\ \beta(t) \\ \gamma(t) \end{pmatrix}$. Show that $X'(t) = M_a X(t)$ if and only if $Y'(t) = D_1 Y(t)$.

(c) Solve the system $Y'(t) = D_1 Y(t)$.

(d) Determine $X(t)$ using the initial conditions.

Part II : We consider two real sequences $(u_n)_{n \in \mathbb{N}}$ and $(v_n)_{n \in \mathbb{N}}$ satisfying the following system :

$$\begin{cases} u_{n+1} = u_n + 4v_n \\ v_{n+1} = 2u_n + 3v_n \end{cases}$$

with $u_0, v_0 \in \mathbb{R}$. Moreover, we define $U_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$ for all $n \in \mathbb{N}$.

1. Determine the matrix N such that $U_{n+1} = NU_n$ for all $n \in \mathbb{N}$.

2. Express U_n in terms of U_0 , N , and n .

3. (a) Determine a diagonal matrix D_2 and an invertible matrix Q such that $N = QD_2Q^{-1}$, then compute Q^{-1} .

(b) Show that $N^n = QD_2^nQ^{-1}$ for all $n \in \mathbb{N}$.

(c) Deduce u_n and v_n as functions of n , u_0 , and v_0 .

4. We now define $V_n = \begin{pmatrix} u_n \\ w_n \\ v_n \end{pmatrix}$ for all $n \in \mathbb{N}$. Using the previous questions, determine the expressions of the general terms of the sequences $(u_n)_{n \in \mathbb{N}}$, $(w_n)_{n \in \mathbb{N}}$, and $(v_n)_{n \in \mathbb{N}}$ satisfying the relation $V_{n+1} = M_0 V_n$, in terms of n , u_0 , v_0 , and w_0 .

Exercice 4

We recall that $1 + 2 + \dots + n = \frac{n(n+1)}{2}$.

Let $n \in \mathbb{N}^*$. For all $x \in \mathbb{R}$, we define

$$A(x) = \begin{pmatrix} 1+x & 1 & \dots & 1 \\ 2 & 2+x & \dots & 2 \\ \vdots & \vdots & \ddots & \vdots \\ n & n & \dots & n+x \end{pmatrix}.$$

1. Compute $\det(A(x))$.
2. We aim to retrieve the result from the previous question by directly evaluating the eigenvalues of $A(x)$.
 - (a) Determine the rank of $A(0)$.
 - (b) Deduce that for all $x \in \mathbb{R}$, $A(x)$ has an eigenvalue with multiplicity at least $n-1$, which depends on x and will be specified.
 - (c) Show that $\lambda = x + \frac{n(n+1)}{2}$ is an eigenvalue of $A(x)$.
 - (d) Deduce from (b) and (c) the value of $\det(A(x))$.